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1 Introduction

The Eventown and Oddtown problems concern maximizing the number of subsets
of a finite set which are subject to certain parity-related constraints. Elwyn
Berlekamp used linear algebra to solve these combinatorial problems [1]. There
is a combinatorial proof of the Oddtown theorem by Fedor Petrov [2], presented
in Section 3, but we have not been able to find a combinatorial proof of the
Eventown theorem and pose this question to the reader. We present a proof of
the Eventown theorem using linear algebra. We note that Petrov’s proof may in
fact be generalized to prove combinatorially the linear dependence of any n + 1
vectors in an n-dimensional vector space.

2 Eventown

We will first discuss Eventown. In this peculiar town, all n residents love to
form clubs. Not being very particular about their club tastes, the residents just
want to maximize the number of clubs, m (even if this means an empty club!).
However, there are traditions in the forming of clubs which must be observed:

(i) each club must have an even number of members;

(ii) no two clubs have exactly the same members;

(iii) any two clubs must share an even number of members.

Of course, in attempting to maximize the number of clubs, the residents would
like to formalize this problem. They do so as follows.

Let [n] denote the set {1, . . . , n}. A club system is a collection of distinct
subsets of [n], C = {C1, . . . , Cm}. Maximizing the number of clubs in Eventown
is then equivalent to maximizing the number of distinct sets in C such that A∩B
is even for all A,B ∈ C

By pairing up the residents and then taking all possible distinct collections
of these pairs, the residents of Eventown find a way to form 2n/2 clubs. But they
wonder if they might be able to form more if only somebody were to come up
with a clever strategy. They hire a consultant who returns with bad news.
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Theorem 1. There can be no more than 2n/2 clubs in Eventown.

Proof (using linear algebra). Let C = {C1, . . . , Cm} ⊂ 2[n] be such that |Ci∩Cj |
is even for every i, j ∈ [m]. It is to be shown that |C| ≤ 2n/2.

Let v1, . . . , vm denote the incidence vectors of the clubs. That is, vi ∈ Fn
2

has entry j = 1 if j ∈ Ci and 0 otherwise. Since the intersection of any two
clubs is even, vi · vj = 0 for all i, j ∈ [m], where the dot product is taken over
F2. Consider the span V of {v1, . . . , vm}. We note that V must be a subspace
of V ⊥ := {w ∈ Fn

2 : v · w = 0 for all v ∈ V } for if u = a1v1 + · · ·+ amvm and
v = b1v1 + · · ·+ bmvm both lie in V , then each aibjvivj = 0, and thus u · v = 0.

Now we recall that, when V is a subspace of W , then dimV + dimV ⊥ =
dimW . Since V ⊂ Fn

2 of dimension n and V ⊂ V ⊥, we have that

2 dimV ≤ dimV + dimV ⊥ = n

in which case
dimV ≤ n/2

which yields the desired result that

|V | ≤ 2n/2.

3 Oddtown

Another strange town named Oddtown lies adjacent to Eventown and has similar
traditions. The N residents of Oddtown also love forming clubs and would
like to maximize the number of them. However, the club-forming traditions in
Oddtown differ in one important way from those in Eventown: the number of
people in each club must be odd, while the number of people shared by any two
clubs remains even.

Many of the Oddtown residents are envious of their neighbors as the Eventown
residents’ pairing strategy always seems to produce more clubs than they can.
In fact, the Oddtown residents are quite convinced that they can form no more
clubs than the number of residents, N . But how to prove this? There are
certainly many ways of forming N clubs in Oddtown. The residents can each
form their own, rather boring, single-person club. On the other hand, when the
number of residents is even, they can form N lively clubs, each of size N − 1.

Theorem 2 (Elwyn Berlekamp, 1969). An Oddtown with N residents may form
no more than N clubs.

We present a combinatorial proof of this result due to Fedor Petrov [2] as
opposed to the more well-known algebraic one. This proof is not only intuitive,
but versatile as it may be generalized to prove the dependence of a collection of
n + 1 vectors in any n-dimensional vector space.
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Proof. Suppose, for the sake of contradiction, there exists an Oddtown club
system F consisting of at least N + 1 clubs. Then there are at least 2N+1

subcollections of F . For each subcollection A, consider the residents from
{1, . . . , N} which are contained in an odd number of clubs in A. By the pigeonhole
principle, two of these subcollections, say A and B, must have the same set of
residents in an odd number of clubs.

This means that each resident in the subcollection C := A4B, i.e. the
collection of sets which are in A or B but not both, is contained in an even
number of clubs. Let C = {U1, . . . , Uk} and observe that

k∑
2

|U1 ∩ Ui| =
∑
x∈U1

k∑
2

|{x} ∩ Ui| ≡ |U1| mod 2.

But now we notice that, if |U1| is odd like every club in Oddtown, then at
least one |U1 ∩ Ui| must also be odd, which is a contradiction.

4 Further Remarks

Question. Can you think of a combinatorial proof of the Eventown result?
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