
Geometric Riemann Sums

Calum Buchanan

December 2020

1 The problem

We would like to evaluate the definite integral of a continuous function f
on a closed interval [a, b] using Riemann sums. In the canonical example,
we partition [a, b] into k intervals of equal size and evaluate the sum of the
areas of rectangles of width b−a

k and height f(xi) where xi is some point in
the ith interval. We obtain a sum of the form

k∑
1

f(xi)(
b−a
k ),

which is an estimate of the area between the x-axis and the curve of y = f(x)
from x = a to x = b. The more rectangles we use, the better our estimate
gets, and thus we may evaluate the area under f(x) by taking a limit,∫ b

a
f(x)dx = lim

k→∞

k∑
i=1

f(xi)(
b−a
k ).

Now all we need to do is evaluate this limit. . . . Tricky stuff. We will think
about this problem a little differently using rectangles of varying widths.

2 Geometric series

First, a warm-up. You may have seen a popular proof that 1 = 0.999 . . .. It
goes like this: set

S = 0.999 . . . .

Then,
10S = 9.999 . . . ,
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and
9S = 10S − S = 9.999 . . .− 0.999 . . . = 9.

Dividing everything by 9, the first and last terms give us S = 1. But
S = 0.999 . . ., so 1 = 0.999 . . ..

Since 0.999 . . . = 9
10 + 9

100 + 9
1000 + · · · , we could have phrased the proof

like this: consider the system of equations

10S = 9 + 9
10 + 9

100 + · · ·
S = 0 + 9

10 + 9
100 + · · · .

Subtracting the bottom equation from the top equation, we see that 9S = 9
and, as before, 0.999 . . . = S = 1.

This is the basic idea of a geometric series. If q is some fraction in the
interval (0, 1), then an infinite sum of the form

∞∑
n=1

qn = q + q2 + q3 + q4 + · · ·

is an example of a geometric series, and it is always finite (provided q stays
strictly between 0 and 1). We can also multiply every term in a geometric
series by a constant, as we did in the previous example. We may have
expressed 0.999 . . . as the geometric series

∑∞
1 9( 1

10)n.
An appropriate next question: Can we always calculate what a geometric

series equals? The answer is yes. Using the same strategy as before, set
S =

∑∞
1 qn = q + q2 + q3 + · · · . Then qS = q2 + q3 + q4 + · · · , and

S − qS = (1 − q)S = q.

Dividing everything by 1 − q, we obtain S = q
1−q , which is precisely the

infinite sum
∑∞

1 qn. In the previous example, we obtain

S = 9

∞∑
1

(
1

10

)n

= 9 · 1/10

1 − (1/10)
= 1.

We’ll remember this.

3 Geometric Riemann sums

Say we would like to evaluate the area under the curve y = x2 on the interval
[0, 1] using Riemann sums. We can use a geometric series to make our job a

2



(a) q = 1
2 (b) q = 3
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Figure 1: Geometric Riemann partitions of [0, 1] for the curve y = x2.

little easier. Instead of partitioning [0, 1] into intervals of equal size, we will
partition it into one interval of size 1

2 , one of size 1
4 , one of size 1

8 , etc. as
follows: [

1
2 , 1
]
,
[
1
4 ,

1
2

]
,
[
1
8 ,

1
4

]
,
[
1
16 ,

1
8

]
, . . . .

In other words, we will take intervals of width (12)n for n = 1, 2, 3, . . .. If we
take right-hand Riemann sums, or overestimates, our rectangles will look
like the crude sketch in Subfigure 1a.

Now, this certainly isn’t the best estimate of the area under x2 between
x = 0 and x = 1, but we can calculate it using a geometric series. The area
of the blue rectangles, A1/2, is the sum of their heights times their widths, or

A1/2 = 1 · 1

2
+

(
1

2

)2

· 1

4
+

(
1

4

)2

· 1

8
+ · · ·

=
∞∑
0

(
1

2n

)2

·
(

1

2

)n+1

=
∞∑
0

(
1

2

)2n

·
(

1

2

)n+1

=

∞∑
0

(
1

2

)3n+1

.

Adapting the trick from the last section, if

A1/2 =
1

2
+

(
1

2

)4

+

(
1

2

)7

+

(
1

2

)10

+ · · · ,

then (
1

2

)3

A1/2 =

(
1

2

)4

+

(
1

2

)7

+

(
1

2

)10

+ · · · ,
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and

A1/2 −
1

8
A1/2 =

7

8
A1/2 =

1

2
.

Multiplying every term by 8
7 , we see that

A1/2 =
1

2
· 8

7
=

4

7
.

As we said, this is a pretty bad estimate of the desired area. However, if
we had instead considered the intervals[

3
4 , 1
]
,
[
(34)2, 34

]
,
[
(34)3, (34)2

]
, . . . ,

and had drawn rectangles of width (34)n − (34)n+1 for n = 0, 1, 2, . . ., as in
Subfigure 1b, then the infinite collection of intervals would still cover [0, 1]
and we could use the same process to obtain an even better estimate. In
fact, we can repeat the above calculations for rectangles of width qn − qn+1

for any fraction q between 0 and 1 as follows:

Aq =
∞∑
0

(qn)2(qn − qn+1) =
∞∑
0

q3n − q3n+1 = (1 − q)
∞∑
0

q3n.

If we set S =
∑∞

0 q3n = 1 + q3 + q6 + · · · , then q3S = q3 + q6 + · · · , and

S − q3S = (1 − q3)S = 1.

Thus, S = 1
1−q3 , and

Aq = (1 − q)S =
1

1 + q + q2
.

As our fractions q become closer to 1, it is not too hard to see that the
approximation of the area between the x-axis and the curve y = x2 improves.
In fact, if we can evaluate the limit of Aq as q approaches 1, we will obtain
the exact area under the curve. Luckily, this is an easy limit to take, and∫ 1

0
x2dx = lim

q→1
Aq = lim

q→1

1

1 + q + q2
=

1

3
,

as desired.
Repeat this trick for any function of the form f(x) = kxn (k real and n

a positive integer) for amazing results.
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