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1 The problem

We would like to evaluate the definite integral of a continuous function f
on a closed interval [a,b] using Riemann sums. In the canonical example,
we partition [a,b] into k intervals of equal size and evaluate the sum of the
areas of rectangles of width bfTa and height f(x;) where z; is some point in
the ith interval. We obtain a sum of the form
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which is an estimate of the area between the z-axis and the curve of y = f(z)
from x = a to x = b. The more rectangles we use, the better our estimate
gets, and thus we may evaluate the area under f(x) by taking a limit,
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Now all we need to do is evaluate this limit. ... Tricky stuff. We will think
about this problem a little differently using rectangles of varying widths.

2 (Geometric series

First, a warm-up. You may have seen a popular proof that 1 =0.999.... It
goes like this: set
S =0.999....

Then,
105 =9.999...,



and
95 =105 —-5=9.999...—-0.999...=9.

Dividing everything by 9, the first and last terms give us S = 1. But
5=0.999...,501=0.999....

Since 0.999... = % + 1%0 + ﬁ + - -+, we could have phrased the proof
like this: consider the system of equations

10S =9+ %+ 25+
S=0+2+ 32+

Subtracting the bottom equation from the top equation, we see that 95 =9
and, as before, 0.999... =5 = 1.

This is the basic idea of a geometric series. If g is some fraction in the
interval (0, 1), then an infinite sum of the form
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is an example of a geometric series, and it is always finite (provided ¢ stays
strictly between 0 and 1). We can also multiply every term in a geometric
series by a constant, as we did in the previous example. We may have
expressed 0.999... as the geometric series Y7 9(55)"
An appropriate next question: Can we always calculate what a geometric
series equals? The answer is yes. Using the same strategy as before, set

S=3F¢"=qg++¢@+-. ThengS=¢+¢ +q¢*+--, and
S—q¢S=(1-q¢)S=q

Dividing everything by 1 — ¢, we obtain S = 1%’(1, which is precisely the
infinite sum Y 7 ¢". In the previous example, we obtain
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We’ll remember this.

3 Geometric Riemann sums

Say we would like to evaluate the area under the curve y = 22 on the interval

[0, 1] using Riemann sums. We can use a geometric series to make our job a
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Figure 1: Geometric Riemann partitions of [0, 1] for the curve y = 22

little easier. Instead of partitioning [0, 1] into intervals of equal size, we will
partition it into one interval of size %, one of size %, one of size %, etc. as
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In other words, we will take intervals of width (3)" for n =1,2,3,.... If we
take right-hand Riemann sums, or overestimates, our rectangles will look
like the crude sketch in Subfigure 1a.
Now, this certainly isn’t the best estimate of the area under 22 between
x =0 and x = 1, but we can calculate it using a geometric series. The area
of the blue rectangles, Ay /o, is the sum of their heights times their widths, or
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follows:

Adapting the trick from the last section, if
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then



and . 1
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Multiplying every term by %, we see that
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As we said, this is a pretty bad estimate of the desired area. However, if
we had instead considered the intervals
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and had drawn rectangles of width (3)" — (2)"! for n = 0,1,2,..., as in
Subfigure 1b, then the infinite collection of intervals would still cover [0, 1]
and we could use the same process to obtain an even better estimate. In
fact, we can repeat the above calculations for rectangles of width ¢ — ¢"*!
for any fraction ¢ between 0 and 1 as follows:
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Ifweset S=0¢"=1+¢+¢"+---, then®S=¢>+¢*+---, and
S—¢*S=(01-¢)8=1.
Thus, S = 5 3,amd
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As our fractions g become closer to 1, it is not too hard to see that the
approximation of the area between the z-axis and the curve y = 22 improves.
In fact, if we can evaluate the limit of A, as ¢ approaches 1, we will obtain

the exact area under the curve. Luckily, this is an easy limit to take, and
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as desired.
Repeat this trick for any function of the form f(x) = ka™ (k real and n
a positive integer) for amazing results.
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