
Saturation & Rainbow Saturation
Numbers of Certain Trees

Calum Buchanan

AMS Spring Eastern Sectional Meeting; Hartford, CT
Special Session on Recent Trends on Graphs & Hypergraphs

April 5, 2025

Saturation: joint w/Puck Rombach

Rainbow: w/Neal Bushaw, Daniel P. Johnston, & Puck Rombach



Plan

Introduction to (semi)saturation

Lower bounds on semisaturation

Double stars



Graph saturation
Add edges, avoiding a forbidden graph H , until you’re stuck

Example (H = K3)



Graph saturation
Add edges, avoiding a forbidden graph H , until you’re stuck

Example (H = K3)



Graph saturation
Add edges, avoiding a forbidden graph H , until you’re stuck

Example (H = K3)



Graph saturation
Add edges, avoiding a forbidden graph H , until you’re stuck

Example (H = K3)



Graph saturation
Add edges, avoiding a forbidden graph H , until you’re stuck

Example (H = K3)



Graph saturation
Add edges, avoiding a forbidden graph H , until you’re stuck

Example (H = K3)



Extremal numbers

Theorem ([Mantel 1907])
The maximum size of a K3-free graph of order n is ⌊n2/4⌋.



Extremal numbers

Theorem ([Mantel 1907])
The maximum size of a K3-free graph of order n is ⌊n2/4⌋.

Theorem ([Turán 1941])
The maximum size of a Kp+1-free graph of order n is(

1 −
1
p

)
n2

2
−

s(p − s)
2p

,

where s is the remainder of n/p. Further, this is witnessed
by a unique graph for every n.
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1
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−

s(p − s)
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where s is the remainder of n/p. Further, this is witnessed
by a unique graph for every n.

Theorem ([Erdős-Stone 1946, Erdős-Simonovits 1966])
The maximum size of an H-free graph of order n is(

1 −
1

χ(H ) − 1

)
n2

2
+ o(n2).
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Saturation numbers (maximum → maximal)

G is H-saturated if
▶ G is H -free, and
▶ the addition of any extra edge to G creates a copy of H .

The saturation number sat(n ,H ) is the minimum size of an
H -saturated graph of order n .

Theorem ([Erdős-Hajnal-Moon 1964])
sat(n ,Kp+1) = (p − 1)(n − p + 1) +

(p−1
2

)
, and this is

witnessed by a unique graph for every n.
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The graph of Erdős, Hajnal, and Moon

The unique graph of minimum size over all K5-saturated graphs
of order 9



Semisaturation numbers

G is H-semisaturated if
▶ G is H -free, and
▶ the addition of any extra edge to G creates a copy of H .

The semisaturation number ssat(n ,H ) is the minimum size of
an H -semisaturated graph of order n .

Theorem ([Erdős-Hajnal-Moon 1964])
ssat(n ,Kp+1) = sat(n ,Kp+1) = (p − 1)(n − p + 1) +

(p−1
2

)
, and

this is witnessed by a unique graph for every n.



Saturation and semisaturation numbers

Example (P4)

H = G =



Saturation and semisaturation numbers

Example (P4)

H = G =



Saturation and semisaturation numbers

Example (P4)

H = G =



Saturation and semisaturation numbers

Example (P4)

H = G =

Since G is P4-saturated, ssat(n ,P4) ⩽ sat(n ,P4) ⩽ ⌈n/2⌉+ 1.

For any graph H without an isolated edge, ssat(n ,P4) ⩾ ⌊n/2⌋.
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Trees [Faudree-Faudree-Gould-Jacobson 2009]

Theorem
Let T ̸= K1,p−1 be a tree of order p ⩾ 5 with second smallest
degree δ2. If n ⩾ (d − 1)3, then sat(n ,T ) ⩾ (δ2 − 1)n/2.

Let Ss,t denote the double star obtained by joining the centers
of K1,s−1 and K1,t−1.

S2,5 = S4,4 =

▶ sat(n ,S2,p−2) = n − ⌊(n + p − 2)/p⌋, which is minimum
over all trees of order p.

▶ For n ⩾ s3 and s ⩽ t , sat(n ,Ss,s) = (s − 1)n/2+O(1), and

s − 1
2

n ⩽ sat(n ,Ss,t ) ⩽
s
2
n + O(1).
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Lower bounds on ssat(n ,H )

For each edge uv in a graph H , define

wt0(uv) = max {d(u), d(v)}− 1,

and let k0 = minuv∈E(H ) {wt0(uv)}.

Remark
If x and y are nonadjacent vertices in an H -semisaturated
graph, then at least one of them has degree at least k0.
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Lower bounds on ssat(n ,H )

For each edge uv in a graph H , define

wt0(uv) = max {d(u), d(v)}− 1,

and let k0 = minuv∈E(H ) {wt0(uv)}.

Remark
If x and y are nonadjacent vertices in an H -semisaturated
graph, then at least one of them has degree at least k0.

Theorem ([Cameron-Puleo 2022])
For any graph H and integer n ⩾ |H |,

ssat(n ,H ) ⩾ w · n
2
− O(1),

where w = minuv∈E(H ) {wt0(uv) + |N (u) ∩ N (v)|}.
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P5 = 1

1

1
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G =

not P5-saturated
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Lower bounds on ssat(n ,H )

Theorem ([Buchanan-Rombach 2024])
For any graph H and integer n ⩾ |H |,

ssat(n ,H ) ⩾

(
k0 +

k ′
1 − k0

k ′
1 + 1

)
n
2
− O(1). (1)

Further, if k1 > k0, then

ssat(n ,H ) ⩾

(
k0 +

k ′
1 − k0

k ′
1

)
n
2
− O(1). (2)



Lower bounds on ssat(n ,H )

In other words, the average degree of an H -semisaturated graph
cannot be much smaller than that of a graph with minimum
degree k0 in which

(1) every vertex of degree k0 has a neighbor of degree k ′
1 .

(1)

k0 = 3, k ′
1 = 5



Lower bounds on ssat(n ,H )

In other words, the average degree of an H -semisaturated graph
cannot be much smaller than that of a graph with minimum
degree k0 in which

(1) every vertex of degree k0 has a neighbor of degree k ′
1 .

(2) every vertex has a neighbor of degree k ′
1 (when k1 > k0).

(1)

k0 = 3, k ′
1 = 5

(2)



Triangle-free graphs H

Theorem ([Buchanan-Rombach 2024])
Let H be a triangle-free graph such that k ′

1 ⩾ k0 +
√

2k0 + 1,
or at least one degree-(k0 + 1) endpoint of every edge
minimizing wt0 has a neighbor of degree k ′

1 and k ′
1 ⩾ k0 + 2.

For any n ⩾ |H |,

ssat(n ,H ) ⩾

(
k0 +

k ′
1 + 1 − k0

k ′
1 + 2

)
n
2
− O(1). (3)

If, in addition to either of the above conditions, k1 > k0,
then

ssat(n ,H ) ⩾

(
k0 +

k ′
1 + 1 − k0

k ′
1 + 1

)
n
2
− O(1). (4)



Triangle-free graphs H

x

y

z
k ′
1 − 1

Nonadjacent degree-k0 vertices x , y in H -semisaturated graph



Triangle-free graphs H

If every edge in H minimizing wt0 has a degree-(k0 + 1)
endpoint with a neighbor of degree at least k ′

1 :

y

N [y ]

x

z
k ′
1 − 1

Nonadjacent degree-k0 vertices x , y in H -semisaturated graph



Double stars

Let Ss,t be obtained by joining the centers of K1,s−1 and K1,t−1

The double star S4,5

Theorem ([Faudree-Faudree-Gould-Jacobson 2009])
For any 2 ⩽ s ⩽ t and n ⩾ s3,

s − 1
2

n ⩽ sat(n ,Ss,s) ⩽
s − 1

2
n +

s2 − 1
2

, and

s − 1
2

n ⩽ sat(n ,Ss,t ) ⩽
s
2
n −

(s − 1)2 + 8
8

.



Double stars

Let Ss,t be obtained by joining the centers of K1,s−1 and K1,t−1

The double star S4,5

Theorem ([Buchanan-Rombach 2024])
For any 2 ⩽ s < t and n ⩾ s + t,

ssat(n ,Ss,t ) ⩾
s(t + 1)n − s(t − s + 2)

2t + 4
−

s2

8
.



Double stars

Let Ss,t be obtained by joining the centers of K1,s−1 and K1,t−1

The double star S4,5

Theorem ([Buchanan-Rombach 2024])
For any 2 ⩽ s < t and n ⩾ q(2t + 4) + s,

sat(n ,Ss,t ) ⩽
s(t + 1)n + s(s − 1)

2t + 4
+
⌈s
2

⌉
,

where q = max {1, ⌊s/2⌋− 1}.



Double stars

Let Ss,t be obtained by joining the centers of K1,s−1 and K1,t−1

The double star S4,5

An S4,5-saturated graph



Double stars

Theorem ([Buchanan-Rombach 2024])
For any 2 ⩽ s < t, there exists n0 = n0(s , t) such that, for
all n ⩾ n0,

ssat(n ,Ss,t ) ⩾
s(t + 1)n − s(t − s + 2)

2t + 4
,

and this is sharp when n ≡ s (mod 2t + 4).

A graph of minimum size over all S3,4-(semi)saturated graphs of
order 39



(proper) Rainbow saturation

An edge coloring of a graph is
▶ proper if incident edges have different colors;
▶ rainbow if all edges have different colors;
▶ rainbow H-free if no H subgraph is rainbow.

A graph is rainbow H-saturated if it is edge-maximal w.r.t.
having a rainbow H -free proper edge coloring.
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▶ proper if incident edges have different colors;
▶ rainbow if all edges have different colors;
▶ rainbow H-free if no H subgraph is rainbow.

A graph is rainbow H-saturated if it is edge-maximal w.r.t.
having a rainbow H -free proper edge coloring.

ex⋆(n ,H ) = maximum size of a rainbow H -saturated graph of
order n

Theorem ([Keevash-Mubayi-Sudakov-Verstraëte 2007])
ex⋆(n ,H ) ≈ ex(n ,H ) when χ(H ) ⩾ 3



(proper) Rainbow saturation

An edge coloring of a graph is
▶ proper if incident edges have different colors;
▶ rainbow if all edges have different colors;
▶ rainbow H-free if no H subgraph is rainbow.

A graph is rainbow H-saturated if it is edge-maximal w.r.t.
having a rainbow H -free proper edge coloring.

sat⋆(n ,H ) = minimum size of a rainbow H -saturated graph of
order n

Theorem ([Bushaw-Johnston-Rombach 2022])
sat⋆(n ,H ) = O(n) when H contains no induced even cycle.



(proper) Rainbow saturation

An edge coloring of a graph is
▶ proper if incident edges have different colors;
▶ rainbow if all edges have different colors;
▶ rainbow H-free if no H subgraph is rainbow.

A graph is rainbow H-saturated if it is edge-maximal w.r.t.
having a rainbow H -free proper edge coloring.

sat⋆(n ,H ) = minimum size of a rainbow H -saturated graph of
order n

Theorem ([Various sources])
sat⋆(n ,H ) = O(n) for any graph H.
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(proper) Rainbow saturation

Example (P4)

H = G =

Theorem ([Bushaw-Johnston-Rombach 2022])

sat⋆(n ,P4) =
4
5
n + O(1)



(proper) Rainbow saturation

Example (P4)

H = G =

Theorem ([Lane-Morrison 2024])

sat⋆(n ,S2,t ) = n −

⌊
n + t + 1

t + 3

⌋
=

t + 2
t + 3

n + O(1)
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Theorem ([Buchanan-Rombach 2024])
For any 2 ⩽ s < t, there exists n0 = n0(s , t) such that, for
all n ⩾ n0,

ssat(n ,Ss,t ) ⩾ s
(

t + 1
t + 2

)
n
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−

s(t − s + 2)
2t + 4
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Theorem ([Buchanan-Rombach 2024])
For any 2 ⩽ s < t, there exists n0 = n0(s , t) such that, for
all n ⩾ n0,

ssat(n ,Ss,t ) ⩾ s
(

t + 1
t + 2

)
n
2
−

s(t − s + 2)
2t + 4

.

Note that sat⋆(n ,H ) ⩾ ssat(n ,H ).

Corollary
For any 2 ⩽ s < t, there exists n0 = n0(s , t) such that, for
all n ⩾ n0,

sat⋆(n ,Ss,t ) ⩾ s
(

t + 1
t + 2

)
n
2
−

s(t − s + 2)
2t + 4

.
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Theorem ([Buchanan-Bushaw-Johnston-Rombach 2025+])
For any 2 ⩽ s ⩽ t,

sat⋆(n ,Ss,t ) ⩽ s
(

s + t
s + t + 1

)
n
2
+ O(1).

S3,4
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Double stars

Theorem ([Buchanan-Bushaw-Johnston-Rombach 2025+])
For any 2 ⩽ s ⩽ t,

sat⋆(n ,Ss,t ) ⩽ s
(

s + t
s + t + 1

)
n
2
+ O(1).

S3,4 G



Thank you!
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