

Graduate Research Workshop in Combinatorics

ODD COVERS AND $b_2(G)$

Let G = (V, E) be a simple graph. An *odd cover* of G is a collection of bicliques (complete bipartite graphs) on subsets of V with the property that $uv \in E$ if and only if uv is in an odd number of bicliques. (The corresponding problem when the graphs in an odd cover are cliques is studied in [3].)

Let $b_2(G)$ denote the minimum cardinality of an odd cover of G. For example, we have $b_2(2K_3) = 3$; a minimum odd cover of $2K_3$ is depicted below.

General lower bound ([2]). For any graph G,

 $2b_2(G) \ge \operatorname{rank}_{\mathbb{F}_2}(A(G)).$

Idea of proof. First, if G_1, \ldots, G_k are bicliques (along with isolated vertices) which form an odd cover of G, then $A(G) = \sum A(G_i) \mod 2$. Second, matrix rank is subadditive.

BIPARTITE GRAPHS

Theorem ([2]). If G is bipartite, then $2b_2(G) = \operatorname{rank}_{\mathbb{F}_2}(A(G)).$

Furthermore, there exists a minimum odd cover of G that respects its bipartition.

Let $\tau(G)$ be the vertex cover number of G. For any forest F, it is known that $\operatorname{rank}_{\mathbb{F}_2}(A(F)) = \tau(F) \ [4].$

Corollary ([2]). For any forest F, we have $b_2(F) = \tau(F).$

Figure: A minimum vertex cover of a forest (in orange) induces a minimum odd cover.

Figure: A minimum odd cover of C_8 . A construction for C_{2n} is left as an exercise.

Unlike C_{2n} , minimum biclique partition of C_{2n+1} is a minimum odd cover.

ODD COVERS OF GRAPHS

Buchanan^{*}, Alexander Clifton, Eric Culver, Jiaxi Nie, Jason O'Neill, Puck Rombach, & Mei Yin

*calum.buchanan@uvm.edu

Corollary ([2]). For $n \ge 2$, $b_2(C_{2n}) = n - 1$.

ODD CYCLES

Theorem ([2]). For $n \ge 2$, $b_2(C_{2n-1}) = n$.

COMPLETE GRAPHS

The "odd cover problem," a variation of the Graham-Pollak problem, was posed by Babai and Frankl [1]: What is the minimum number of bicliques which cover every edge of K_n and odd number of times?

The authors of [5] noticed the following odd cover of K_8 and solved the odd cover problem for an infinite but density-0 set of integers.

Theorem ([2]). For any positive integer n,

Conjecture ([2]). For $n \ge 2$, $b_2(K_{2n}) = n$ if and only if $4 \mid n$, and $b_2(K_{2n-1}) = n$.

An upper bound and T_k

For any graph G with $\operatorname{rank}_{\mathbb{F}_2}(A(G)) = 2k$, there exists an $n \times 2k$ matrix M such that

 $A(G) = M(\oplus$

There is a collection of k tricliques associated to M whose symmetric difference of edge sets is E(G). Since each triclique can replaced by two bicliques, we obtain the following.

General upper bound

 $b_2(G) \leq \operatorname{ran}$

The graph T_k , whose adjacency matrix is given by (1) when M is the $n \times 2^{2k}$ matrix whose rows are all distinct vectors over \mathbb{F}_2 of length 2k, is well-known. The rank over \mathbb{F}_2 of $A(T_k)$ is 2k, and our general upper bound is tight for T_1 and T_2 . For larger k, we have

 $b_2(T_k) \ge lo$

but we conjecture $b_2(T)$

$$\left\lceil \frac{n}{2} \right\rceil \le b_2(K_n) \le \left\lceil \frac{n}{2} \right\rceil + 1.$$

In particular, $b_2(K_n) = \lceil n/2 \rceil$ when $8 \mid n \text{ or } n \equiv \pm 1 \mod 8$.

$$\geq_1^k \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} M^T.$$
(1)

$$\operatorname{lk}_{\mathbb{F}_2}(A(G)).$$

$$og_3(4) \cdot k,$$
 $T_k) = 2k \text{ for any } k.$

REFERENCES

- [1] L. Babai and P. Frankl. Linear Algebra Methods in Combinatorics. University of Chicago, 1988, 1992, 2020.
- [2] C. Buchanan, A. Clifton, A. Culver, J. Nie, J. O'Neill, P. Rombach, and M. Yin. Odd Covers of Graphs, arXiv:, 2022.
- [3] C. Buchanan, C. Purcell, and P. Rombach. Subgraph complementation and minimum rank. The Electronic Journal of Combinatorics, 29(1), 2022.
- [4] A. Mohammadian. Trees and acyclic matrices over arbitrary fields. Linear and Multilinear Algebra, 64(3):466-476, 2016.
- [5] J. Radhakrishnan, P. Sen, and S. Vishwanathan. Depth-3 arithmetic circuits for $S_n^2(x)$ and extensions of the Graham-Pollack [sic] theorem. Foundations of Software Technology and Theoretical Computer Science, Springer, Berlin, Heidelberg, 2000.

