
Mathematics in Industry Reports (MIIR) 1

One Algorithm to Rule Them All

Nicholas Brown 1,Calum Buchanan 2,Noah Chicoine 3,Brooks

Emerick 4†,Adebayo Emmanuel 5,Caroline Hammond 6,Kayode

Oluwasegun 7,Olivia Pomerenk 8,Luis Schneegans 9,and Hemaho Taboe 10

1Penn State University, 2University of Vermont, 3Northeastern University, 4Kutztown University,
5University of Delaware, 6Dartmouth College, 7Drexel University, 8New York University, 9Stanford

University, 10University of Florida

(Communicated to MIIR on 1 April 2025)

Study Group: 40th MPI Workshop, 25–29 June, 2024, University of Vermont

Communicated by: Taras Lakoba

Industrial Partner: Graduate College at the University of Delaware

Presenter: Johanna Voznak

Team Members: Evan Bongiovanni, Portsmith, RI; Nicholas Brown, Penn State University;

Calum Buchanan, University of Vermont; Noah Chicoine, Northeastern University; Brooks Em-

erick, Kutztown University; Adebayo Emmanuel, University of Delaware; Caroline Hammond,

Dartmouth College; Kayode Oluwasegun, Drexel University; Olivia Pomerenk, New York Uni-

versity; Luis Schneegans, Stanford University; and Hemaho Taboe, University of Florida.

Industrial Sector: Logistics.

Key Words: Linear programming; assignment problem; stable marriage problem; Gale-Shapley

algorithm; machine learning.

MSC2020 Codes: 90B06, 90C05, 90C17, 90C90.

† Corresponding Author: bemerick@kutztown.edu



2 Brown et al.

Summary

This report addresses the challenge of determining optimal mentor-

mentee pairings for the University of Delaware’s GradLEAP program.

Two mathematical models are developed—a linear programming ap-

proach solved using the Hungarian Method, and a stable marriage for-

mulation solved via the Gale-Shapley algorithm. Compatibility scores,

calculated using responses to a structured survey, incorporate both

weighted and uniform criteria such as academic discipline, career in-

terests, and age preferences. A revised survey introduces a Likert scale

for ranking preferences, allowing for greater flexibility in determining

weights and improving match quality. The performance of both models

is evaluated using real and synthetically generated data, with results

indicating that the Hungarian Method yields more consistent matches

while the Gale-Shapley method is more likely to produce highly com-

patible pairings. The study also explores classification models using

decision trees and random forests, with an eye toward future devel-

opment of regression-based scoring systems. The final deliverables in-

clude a restructured survey, a user-friendly executable program, and

documentation for use in future iterations of the GradLEAP program.

1 Introduction

The Graduate College at the University of Delaware has implemented the GradLEAP

program over the past several years to connect current graduate students to alumni men-

tors. The program aims to identify willing mentors and match them to similar mentees

under a certain set of criteria that includes cultural background, academic disciplines,

career interests, and specific program goals among others. With strong connections in

place, the Graduate College hopes the mentor will provide guidance and support as the

mentee navigates through their graduate career.

Currently, the Graduate College contracts with an educational technology vendor to

optimize the matching process between mentees and mentors. The process is achieved

by analyzing data gathered from mentee and mentor surveys. The Graduate College has

analyzed the survey data and and the matching results from Cohort 3, a group of 293

possible mentees and 150 possible mentors. However, the resulting matches have been

less than ideal. Post-surveys reveal that only about 30% of matchings were considered

“good” with many having to be re-matched. Furthermore, some mentee-mentor pairs do

not match on the most important elements such as academic discipline or career interests.

The Graduate College seeks to achieve the following goals from the Mathematical

Problems in Industry workshop:

• Develop a more robust, user-friendly algorithm that maximizes “good” matches and

is compatible with survey data formatted from Google Forms.

• Review the current mentee and mentor surveys to determine if useful data is being

collected and make revisions where necessary.
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• Generate a confidence score with appropriate rationale so that potential matches can

be reviewed.

In the sections that follow, we develop a sound framework for determining optimal

matches. We achieve this in two phases: First, we use the availabile data from the current

survey to construct two mathematical formulations. We use this available data to vali-

date the model, which provides proof of concept. Second, we revise the current survey to

be structured in such a way that our formulations matche mentees and mentors on every

important criteria. This includes built-in Likert scales that can be used to effectively

weight each criteria. Then, we formulate both mathematical models to conform to the

new survey results. We validate the model using synthetic data based on actual data

provided for Cohort 3. The final product is an algorithm to be used in future iterations

of the graduate mentee-mentor program.

This paper is organized as follows: In Section 2 we define compatibility between any

potential mentee-mentor pair using the available survey results from Cohort 3. This def-

inition of compatibility is then used to formulate a feasible linear programming problem

(LP) that is solved for Cohort 3 using the Hungarian Method. We then use compatibility

to dictate a ranking system for the stable marriage problem (SMP) formulation, which is

solved for Cohort 3 using the Gale-Shapley Method. We discuss the results of each model

by computing appropriate measures and compare the output of our matching algorithms.

In Section 3, we examine the various issues with the current survey format and suggest

a new survey with a built-in ranking system to aid in the construction of compatibility.

We then construct the LP and SMP formulations using synthetically generated output

from the reformatted survey and develop a complete program package that gives optimal

pairings for future cohorts. In Section 4, we consider two other alternative solutions using

the Jaccard similarity index and a machine learning approach. Finally, in Section 5 we

conclude with a discussion.

2 Formulations Based on Existing Survey Data

A solution to this problem exists but requires an appropriate formulation. Indeed, the

problem can be solved using either a linear programming (LP) or a stable marriage

problem (SMP) approach. We explore both avenues. To achieve an appropriate LP for-

mulation, we must define an objective function and a set of linear constraints on the

decision variables. The objective function is dependent on a metric that measures either

the compatibility of every possible mentee-mentor assignment. To achieve an appropriate

SMP formulation, we must have a ranking system in place. That is, each mentee has a

preferred ordering of potential mentors. In both cases, we seek a relationship between

mentees and mentors that measures the strength of every potential pairing. Before we

proceed with solving each respective problem, we construct this relationship by defining

a compatibility score. In the subsections that follow, we present the criteria necessary to

define compatibility and then we formulate and solve each model.
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Figure 1. Schematic representation of the m mentees and n mentors with their optimal

matches as determined by compatibility score cij . Every mentee must have a single

mentor, but not every mentor is assigned to a mentee. Furthermore, mentors can have

more than one mentee depending on each mentor’s capacity according to Question 7 of

the survey.

2.1 Criteria and Weights

We first define the relationship between every possible mentee-mentor pairing by con-

structing a compatibility matrix, C, of size m×n, where m denotes the number of mentees

and n denotes the number of mentors. Here, each element cij , for i ∈ {1, 2, . . .m} and

j ∈ {1, 2, . . . , n}, of the matrix C is a numerical measure of compatibility between mentee

si and mentor tj . Each element of this matrix is calculated based on criteria explicitly

defined from the provided Cohort 3 survey results. The goal is to match an optimal

mentor to each mentee. That is, each mentee must be matched, but a mentor need not

be matched. Figure 1 shows a schematic of an optimal match with compatibility values

shown between each connecting edge.

We identify eight questions from both the mentee and mentor surveys that are linked.

By analyzing each participant’s response, we are able to make assumptions into the

similarities of a particular mentee and mentor pairing. Therefore, we associate each linked

question to a particular criterion to be used to create a compatibility score. The criteria

are detailed in Table 1.

The survey questions associated to each criteria typically have a drop-down list of

possible responses. A majority of the questions also have the option for the participant

to select multiple options in the drop-down list. Hence, we examine the given answer(s)

to each linked question and observe the number of matches that occur. It is known that a

set of particular survey questions are more important to the mentee than others. Indeed,

Question 9 on the mentee survey asks directly what attributes of a potential mentor

are most important in determining whether or not that mentor is a good match. This

question, along with the possible answers, is provided in Figure 2.

Because each mentee is given the opportunity to choose the most important prefer-

ence, we incorporate a weight on certain characteristics identified from their response

to Question 9. From the eight notable linked survey questions, we construct five criteria

that are assigned a weight and three minor criteria that have uniform weights applied.

The minor criteria are weighted uniformly with a small numerical value. These criteria

essentially act as a tie-breaker. Hence, our eight criteria for determining compatibility
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Table 1. A listing of the eight criteria identified from the existing survey. Each criteria has

an associated matching matrix, whose elements represent a connection between mentees

and mentors in that respective category.

Matrix Criterion Description

W
ei

g
h
te

d
b
y

Q
u
es

ti
o
n

9

Y1 Age Preference
Age range in which the mentee
prefers the mentor.

Y2 Academic Discipline
Academic disciplines of mentee and
mentor are the same or similar.

Y3 Career Interests
Mentee’s career interests align with
mentor’s current or future career.

Y4 Language Preference
Languages, other than English, in
both mentee and mentor prefer.

Y5 Challenges Faced
Mentee and mentor have had
similar life experiences.

U
n
if

o
rm

Z1 Gender
Mentee and mentor have
similar gender preferences.

Z2 First Generation
Alignment of first-generation
college students.

Z3 Race/Ethnicity
Mentee and mentor have similar
race/ethnicity profiles.

Q9. Out of the preferences you shared, which is most important to you?

1.)My mentor is about the age I requested.

2.)My mentor and I have the same academic interests.

3.)My mentor and I share similar career interests.

4.)My mentor and I speak the same language (besides English).

5.)My mentor and I have faced similar challenges in life.

6.)All of these are equally important to me.

7.)Something else matters most to me.

Figure 2. A snapshot of Question 9 of the existing survey that asked the mentee to

identify the most important criteria.

come in two flavors: criteria weighted by Question 9 and uniformly weighted criteria (see

Table 1).

For each weighted criterion, we construct an m × n matrix Yk, for k ∈ {1, 2, 3, 4, 5}.
Each element of Yk, denoted by yijk, is a numerical value between 0 and 1 that measures

whether or not matches occurred in the corresponding linked survey questions. Likewise,

we construct m × n matrices Z`, for ` ∈ {1, 2, 3}, that correspond to each uniform

criterion. The following descriptions demonstrate our methodology for constructing the

numerical values yijk and zij` in each set of matrices:

• Criteria weighted according to Question 9:

◦ Y1: Age Relation – A connection between si and tj exists if the age of tj is greater
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Figure 3. A snapshot of the related academic disciplines represented by a graph.

than the age of si by 5 or more years. That is,

yij1 =

{
1 if (age of tj)− (age of si) ≥ 5

0 otherwise

Data for this particular criterion were limited. Here, we simply assume that the

mentee prefers someone either near to their age or older. A more dynamic approach

is applied in the second iteration of the model.

◦ Y2: Academic Discipline – The drop-down answer list for this criterion has 108 op-

tions, where the participant only selects one. A connection between si and tj exists

if the mentee’s discipline is relatively “close” to the mentor’s discipline. We define

this distance from one discipline to another by constructing a graph (i.e. tree) by

inspection of all 108 disciplines. A depiction of this tree is given in Figure 3. Two

different disciplines are connected with an edge if they are similar in nature. An ex-

ample of directly related studies are mathematics and physics. These two disciplines

would be connected by a single edge. Indirectly related subjects are mathematics

and mechanical engineering since mechanical engineering can be viewed as directly

related to physics. Given a si’s academic discipline, a connection between si and tj
is determined by traversing this tree. A similarity score is created by the following

function:

yij2 =

{
bd if 0 ≤ d ≤ 2

0 if d > 2
,

where b is the branching factor and d is the depth. To find d, a breadth-first search

is done on a graph connecting all of the majors. However, since breadth-first search

is an expensive algorithm (O(bd)), we limit the depth to 2 to ensure compatibility

between the mentor and mentee’s fields of study. For the purpose of this study, we

use b = 1/3. For the exact definition of which majors are directly related, see the

supplementary information.

◦ Y3: Career Interests – The drop-down answer list for this criterion has 26 options

with the possibility to list more than one. A connection between si and tj exists if at
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least one match between all provided answers to the corresponding survey questions

is made. The numerical value is calculated as the number of matches divided by

the total number of mentee responses to the question. For instance, if si lists career

interests as

{Arts and culture, Communications, Community and social services}

and tj lists career interests as

{Arts and culture, Education, Education administration, Government},

then yij3 = 1/3. This is done to avoid penalizing those students who list very few

interests, as opposed to those who list many interests. In this way, the weights are

biased in the mentees favor.

◦ Y4: Language Preference – The drop-down answer list for this criterion has 16 op-

tions with the possibility to list more than one. A connection between si and tj exists

if at least one match between all provided answers is made, not including English.

Question 4 from each survey (see Table 1) is worded in such a way that Grad LEAP

seeks a connection between preferred language, which may not be English. Further-

more, answer 2 from Question 9 excludes English. Because every mentee and mentor

is taking or has taken English as a Second Language (ESL) courses at the University

of Delaware, we effectively take English out of the calculation for yij4. That is, we

assume every participant will match for English and only compute a value for yij4
based on other provided languages in the response. The numerical value is calcu-

lated as the number of non-English matches divided by the total number of mentee

non-English responses to the question. To demonstrate, suppose si selects

{English, Mandarin, Vietnamese},

and tj selects

{English, Mandarin, Cantonese},

then yij4 = 1/2. This is done to avoid penalizing those mentees who list very few

interests, as opposed to those who list many interests.

◦ Y5: Challenges Faced – The drop-down answer list for this criterion has 22 options

with the possibility to list more than one. A connection between si and tj exists if at

least one match between all provided answers to the corresponding survey questions

is made. Similarly to the previous two criteria, the numerical value, yij5, is calcu-

lated as the number of matches divided by the total number of mentee responses to

the question.

• Uniformly weighted criteria:

◦ Z1: Gender – A connection between si and tj exists if the gender selected in the



8 Brown et al.

drop-down menu matches exactly. That is,

zij1 =

{
1 if (gender of si) = (gender of tj)

0 otherwise

◦ Z2: First Generation – Indication of whether or not a participant was a first genera-

tion college student was incorporated into a much broader survey question on back-

ground. However, we were provided only with “TRUE” or “FALSE” data about the

first generation component of that survey question. Therefore, a connection between

si and tj exists if the true/false selection matched exactly. That is,

zij2 =

{
1 if both true or both false

0 otherwise

If a participant left this entry blank, no match was made on first generation status.

◦ Z3: Race/Ethnicity – The drop-down answer list for this criterion has 12 options

with the possibility to list more than one. A connection between si and tj exists

if at least one match between all provided answers to the corresponding survey

questions is made. The numerical value, zij3, is calculated as the number of matches

divided by the total number of mentee responses to the question.

Now that the criteria are defined, we associate a weight to the weighted criteria, Yk,

based on the mentee’s selection to Question 9. We note from the possible selections to this

question, that a mentee could respond with “All of these [criteria] are equally important.”

They could also respond with “Something else matters most to me” that is not included

in the criteria. Otherwise, the other options are to select a single weighted criterion that

is the most important. Therefore, we construct the matrix Vk whose elements vijk are the

associated weights to the criteria element yijk. Responses 1 through 5 correspond directly

to criteria k = 1 through k = 5. Suppose a is the participant’s response to Question 9,

so that a ∈ {1, 2, . . . , 7}. Let J represent the m× n matrix of ones, then we define Vk as

a piecewise matrix function dependent on the participant’s response:

Vk(a) =


.6J if a ∈ {1, 2, 3, 4, 5} and a = k

.1J if a ∈ {1, 2, 3, 4, 5} and a 6= k

.2J if a ∈ {6, 7}
(2.1)

To demonstrate this, assume that the mentee selects answer 2, then the corresponding

weight matrix for this participant is

Vk(2) =

{
0.6J if k = 2

0.1J if k ∈ {1, 3, 4, 5}

In essence, the weight of 0.6 is shifted to the appropriate criterion based on the mentee’s

response. We choose weights so that the sum over the criteria (k) is one. If the mentee

chooses answer 6 or 7, we have

Vk(6) = Vk(7) = 0.2J .

This yields equal weight for all criteria even in the case when the mentee selects answer
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7. An equal weight distribution is justified in this case since we do not know in particular

which criterion needs to be more heavily weighted.

For the uniform criteria, we use a uniform weight of w = 0.01. Here, the three uniform

criteria are not mentioned in Question 9, and we use a much smaller weight so that

the other, more important, criteria stand out. Essentially, the uniform criteria give the

compatibility a slight “nudge” and may act as a tie-breaker.

2.2 Compatibility Score

Let C be the compatibility matrix of size m × n whose elements are the compatibility

score, cij , of mentee si and mentor tj , defined by

cij =

p∑
k=1

vijkyijk +

q∑
`=1

wzij`.

Here, p = 5 is the number of weighted criteria and q = 3 is the number of uniform criteria.

The indices k and ` are as defined in the previous subsection, and yijk and zij` are criteria

matrix elements. The value vijk (w) is the value of weighted (uniform) criterion k (`) to

mentee i. Here, the maximum value of yijk for all i, j, and k is 1. Further, the values of

vijk for k = 1, 2, . . . , p are normalized so that
∑p
k=1 vijk = 1 for all i, j. This means, for

any given i and j,
∑p
k=1 vijkyijk ≤ 1. However, given any i and j, since w = 0.01, the

sum
∑q
`=1 wzij` is at most 0.03. Therefore, we have

0 ≤ cij ≤ 1.03, for all i and j.

A compatibility score of 0 means the mentee and mentor disagree on all criteria. A score

of 1.03 indicates a perfect match, including the slight “nudge” by the uniform criteria.

2.3 Assignment Problem Formulation

As previously mentioned, the goal of the algorithm was to find a set of good mentor-

mentee pairings given a set of mentees and a set of potential mentors. The first method

we utilize to compute a set of best possible matches through linear programming.

By generating the matrix C of compatibility scores for every possible mentee-mentor

pair, we formulated the original goal into a classic form of a linear program known as

the “Assignment Problem” [1]. In the assignment problem, there is a binary decisions

variable xij for each possible mentor-mentee pairing. In the final solution of the linear

program, xij takes on a value of 0 or 1 according to the assignment below:

xij =

{
1 if si is matched with tj

0 otherwise

The objective of the linear program is to maximize the objective function z which is

defined below:

z =

m∑
i=1

n∑
j=1

cijxij .

In this form of the objective function, the total compatibility among all matches assigned
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is maximized. When maximizing the objective function z, the solution is constrained by

two phenomena: (1) each mentee must be assigned exactly 1 mentor, and (2) each mentor

must be assigned at most Lj mentees, where Lj is the number of mentees mentor j is will-

ing to mentor. These constraints can be easily incorporated into the linear programming

formulation, which is shown below:

Maximize z =

m∑
i=1

n∑
j=1

cijxij

Subject to:

n∑
j=1

xij = 1 ∀ i = 1, 2, . . . ,m

m∑
i=1

xij ≤ Lj ∀ j = 1, 2, . . . , n

xij ∈ {0, 1}

The assignment problem can be solved more efficiently than standard linear program-

ming problems. Using the Hungarian method [1], the assignment problem can be solved

in O(n3) time as opposed to O(2n) time, as would be the case using the Simplex Method.

However, the Hungarian method requires that each constraint be an equality constraint

with right-hand side equal to 1. Also, we must have m = n. Our LP formulation can be

manipulated to fit this structure by adding “dummy” mentors and/or “dummy” mentees,

before solving. The dummy variables do not represent any real phenomenon, and are

included simply for the purposes of initializing the Hungarian method.

To demonstrate the conversion to an assignment problem, consider the total number

of possible mentor slots available, given by n′ =
∑n
j=1 Lj . In order for every mentee to

receive a mentor, we must have n′ ≥ m. Let N = max{m,n′}. If there are more mentor

slots than mentees (n′ > m, N = n′), exactly N −m dummy mentees are added with

compatibility score cij = 0 with all mentors. Similarly, if there are more mentees than

available mentor slots (n′ < m, N = m), exactly N − n′ dummy mentors will be added

before solving. Any mentor or mentee assigned to a dummy mentee or mentor in the

optimal solution is simply unmatched in the final solution. In the case when n′ < m, a

suboptimal solution is obtained since exactly N −m unmatched mentees exist.

Let ĉij and x̂ij denote the extended compatibility score and extended binary decisions

variable, respectively, which includes Lj duplicate mentors for each tj and appropriate

dummy mentees/mentors depending on the value of N . Additionally, since the right-

hand-side of all the constraints is in integer form, properties of linear programming

dictate that all x̂ij in the final solution will also be integer valued. Thus, the integer

constraint on x̂ij can also be relaxed. The assignment problem then takes the form:
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Maximize z =

N∑
i=1

N∑
j=1

ĉij x̂ij

Subject to:

N∑
j=1

x̂ij = 1 ∀ i = 1, 2, . . . , N

N∑
i=1

x̂ij = 1 ∀ j = 1, 2, . . . , N

0 ≤ x̂ij ≤ 1

The final algorithm that was generated during this project was designed to be robust

to unequal numbers of mentors and mentees, and omits the dummy assignments from

the final output.

2.4 Stable Marriage Problem Formulation

The second method we utilize in our algorithm to find a good set of mentor/mentee

matches is the stable-marriage problem (SMP), which is solved using the Gale-Shapley

algorithm [2]. Having obtained the compatibility matrix C corresponding to the mentees

s1, . . . , sm and mentors t1, . . . , tn, the Gale-Shapley algorithm provides a solution to our

matching problem that finds the stable pairings that are mentee-optimal. Stable matches

are those such that there are no mentor-mentee pairs, say (s, t), such that both s and t

would prefer to be matched together instead of in their current pair. The Gale-Shapley

algorithm provides stable matchings, which may result in a different set of matchings

than the solution found using the LP. Further, it can provide stable matchings which are

optimal with respect to mentee preferences of mentors, meaning that that every mentee

is as happy as they can be in a stable matching [2].

The algorithm can be briefly summarized as follows: Extend the set of mentees and

mentors to include Lj duplicate mentors for each tj and add appropriate dummy mentee/

mentor variables to balance cardinalities of each set to N . Using the same compatibility

matrix C (with zero entries for dummy variables), the Gale-Shapley algorithm constructs

two families of preference orderings: an ordering ≤s of the mentors’ t1, . . . , tN compati-

bility with each student s, and an ordering ≤t of the mentees s1, . . . , sN for each mentor

t. Then, at each iteration, it takes an unmatched mentee and matches them to their top

preference of mentor who will “accept” them. A mentor will accept a mentee if they are

not already matched to a mentee they prefer; if the mentor is already matched but would

rather switch, they do so, and we rematch the now unmatched mentee later. The process

continues until all mentees are matched to the top mentors who will accept them.

Similarly to the LP formulation of the matching problem, the Gale-Shapley stable

marriage algorithm is robust to cases where the number of mentors and mentees is un-

equal. Additionally, it is also possible to perform this algorithm with the roles of the

mentees and mentors swapped, meaning the pairings will be mentor-optimal. In addition
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Table 2. Successful pairing metrics for each algorithm.

Metric Hungarian (LP) Gale-Shapley (SMP)

Top Preference 86.47% 83.57%
c-Ratio 86.75% 83.40%

Acad or Career 90.10% 86.69%
Acad and Career 35.49% 34.47%

Min c-Score 0.1304 0.0302
Mean c-Score 0.5636 0.5419
Max c-Score 0.9374 0.9499

to finding the most optimal matching for mentees, the Gale-Shapley algorithm is fast,

finding an optimal set of mentor-mentee pairings in O(n2) time.

2.5 Results of LP and SMP Models

We expect to see different results from the Hungarian method and the Gale-Shapley

algorithm since they have different functionalities. Figure 4 demonstrates how well both

algorithms can match mentor and mentee pairs1. The top subfigure is a cumulative

frequency plot of the compatibility scores and the middle subfigure is a frequency plot

of the same data. If the definition of a good pairing is based solely on the compatibility

score, conclusions can be made using that data alone. SMP produces more pairs with

very high and very low scores, while LP produces less of these extremes. This metric

suggests SMP may be superior for a good pairing threshold of cij ≥ 0.4, while LP is

superior otherwise. However, the lower subfigure displays a different metric: the percent

of matches that satisfy each individual weighted criterion. From this, LP appears to be

the better choice if one cares solely about one of the criterion since it matches at least

as many or more individual values than the SMP formulation.

Table 2 demonstrates more comparison metrics for the two algorithms using current

real data. The first row contains the percent of matches where the metric most important

to the mentee was the same for the mentee-mentor pair. The second row shows what we

denote the c-ratio, which is defined as follows

c-Ratio =
zactual
zideal

,

where zactual is the z value obtained from the results of the algorithms and zideal is the z

value if every mentee was paired with the mentor with whom they share the most simi-

larity. The Gale-Shapley algorithm does not optimize this value, so it is unsurprising that

the Hungarian method outperforms it. However, it still performs very well on this metric.

The third row displays the percent of matches where either the academic disciplines of

the pairs or the career of the mentor and career aspirations of the mentee exactly match.

The fourth row shows the percentage of pairs where both academic disciplines and career

interests matched. These metrics are considered heavily by the University of Delaware

when matches are approved, so this metric is especially good at predicting the number

1 The Gale-Shapley algorithm is dependent on the processing order of the mentors, so it
will not always find the same solution. However, the algorithm is not very susceptible to initial
conditions, so the relationship between the algorithms is consistent.
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Figure 4. Comparisons of the Hungarian and Gale-Shapley solutions for the Cohort 3

data. Cumulative distribution (top) and frequency distribution (middle) of compatibil-

ity scores matched by each algorithm. (Bottom) Bar graph showing the proportion of

matches that accurately pair each weighted criterion.
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of pairings that are successful. Hungarian outperforms the Gale-Shapley algorithm in all

four of these metrics for the Cohort 3 dataset, but not to the extent that one can con-

clude that Hungarian is always the best algorithm to use. As a result, when building an

executable file for the University of Delaware to use, the option of using either algorithm

is included.

3 Formulations Based on Revised Survey

We have successfully built two working models that match mentees to mentors with a

relatively high success rate based on compatibility. Compatibility is determined by ana-

lyzing 8 questions from the current survey. Certain compatibility measures are weighted

according to participants’ answers to Question 9 (see Figure 2), which effectively allows

users to determine the most important criteria for matching to a potential mentor. The

models are validated using the Cohort 3 data set from this existing survey.

We discussed with our company liaison how the survey could be revised in order to

refine the compatibility score while simultaneously making the program structure more

robust. In the subsections that follow, we discuss the changes made to the survey, and

how these changes affect the existing criteria and create new criteria. We end this section

with a discussion of the results of both models built on synthetic data from our new

survey.

3.1 Revised Survey

We made several modifications to the existing survey. We removed unnecessary questions

(e.g. a cultural question seemed redundant with the background, race/ethnicity, and

language questions), added a question about mentee-mentor degree preference, and added

a Likert importance scale for 10 different preferences. Unlike the previous survey question

that only allowed students to identify one important preference, the Likert scale method

gives them the freedom to decide the importance of all possible match criteria.

The revised survey now has all of the mentees rank the importance of each question

on a scale from 0 to 5. Figure 5 shows an example of a new survey question. By doing

this, the values of vijk (for all j) can be personalized to each mentee in a more complex

way than the original formulation. In the previous formulation, vijk was calculated such

that vijk is large for the criterion k that student i selected as most important to them,

while for all other criteria the value of vijk is smaller and uniform (see Equation (2.1)).

This scheme explains why the results on the original data show a vast difference between

the percentage of mentees who matched either close academics or one exact career match

(≈ 90%) and both close academics and one exact career match (≈ 35%) since most

mentees choose one of these criteria as their most important, which is weighted very

heavily. However, past feedback suggests that career interests and academic metrics are

both very important to mentees. By incorporating this scale, the overall satisfaction of

each individual mentee can be increased.

Other revised questions include a variant to the age preference where mentees select

whether they would prefer to have mentors around 5, 10, or over 20 years older than

them. This provides a concrete metric to determine how the age compatibility between
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the mentor and mentee can be generated without complicating the system to a large

degree. This question is shown in Figure 6. Another is a variant of the language question

where instead of mentees and mentors listing all of the languages they feel comfortable

speaking, they only select the languages other than English that fit this category. Since

the mentors and mentees both have or are attending the University of Delaware, it is

known that they can speak English. As a result, whether participants would prefer or are

willing to speak other languages is more pertinent information. Finally, another question

that only exists on the mentor survey is gender preference. The answer to this question

acts as an “override” feature, where if the mentor is not willing to work with a mentee of

a specific gender identity, then the compatibility score will be set to zero. These changes

were implemented into a new survey and the associated Google Forms were created. In

the following subsections, we explain how the new compatibility score is created from

the altered criteria.

3.2 New and Modified Criteria

Using the updated survey format, we modify criteria that we defined in Section 2.1 and

add new criteria that aligns with new survey questions. Unlike our previous model, not

only will the importance rank from the Likert scale influence the weight of the criteria,

it may also affect the strength of a potential match.

Figure 5. An example question about life experiences/challenges faced on the mentee

survey that includes the new Likert scale.
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Figure 6. The modified question on age preference with the accompanying Likert scale.

This question is used to better gauge the mentee’s preferred mentor age.

• Modified Criteria:

◦ Y1: Age Relation – We expand upon our previous formulation by including a wider

range of possible compatibility scores based on age match. A connection between

si and tj is determined using a custom, piecewise function. Consider two input

variables: mentee i’s age, ai, and mentor j’s age, bj . Also, consider two parameters:

the mentee’s preferred age range of the mentor, β, and the importance rank, γ. The

two parameters are given by the mentee answering the question in Figure 6. Here, if

the mentee selects “around 5 years older,” the value of β is 5. If the mentee selects

“20+ years older,” the value of β is 20. Therefore, β ∈ {5, 10, 20}. For the ranking

value, we have γ ∈ {0, 1, 2, 3, 4, 5}. We assume a connection between si and tj is a

perfect match if the mentor’s age is within 5 years of the mentee’s preferred range.

That is, if |bj − (ai + β)| ≤ 5, then yij1 = 1. Outside this range, we define semi-

compatibility by using a smooth function based on the logistic curve. We define the

following functions:

f±(ai, bj ;β, γ) =
2

γ
· 1

1 + e±0.2[bj−(ai+β)−5]

Note, the functions exist for γ 6= 0. Here, f+ (f−) is monotonically decreasing

(increasing), and transitions smoothly from a maximum value of 2/γ to 0 (minimum

value of 0 to 2/γ). Furthermore, the inflection point of the logistic curve is at age

ai + β + 5, which is an arbitrary addition of 5 years to the mentee’s preferred age

range. The transition is biased in the “older” direction because of the nature of the

question. These functions ensure that the matching value associated with a mentor’s
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age will gradually taper off as the match is less satisfactory on either side of yij1 = 1.

We break down the full function below:

— If the mentee chooses 5 or 10 years older as the age preference, then the matching

strength, yij1, takes on the following values dependent on the rank, γ:

for γ = 0, yij1 = 1;

for γ ∈ {1, 2, 3, 4}, yij1 =


f−(ai, bj ;β, γ) if (ai + β)− bj < 5

1 if |bj − (ai + β)| ≤ 5

f+(ai, bj ;β, γ) if bj − (ai + β) > 5

;

for γ = 5, yij1 =


0 if (ai + β)− bj < 5

1 if |bj − (ai + β)| ≤ 5

0 if bj − (ai + β) > 5

.

— If the mentee chooses 20+ years older (i.e. β = 20), then the matching strength,

yij1, takes on the following values dependent on the rank, γ:

for γ = 0, yij1 = 1;

for γ ∈ {1, 2, 3, 4}, yij1 =

{
f−(ai, bj ;β, γ) if (ai + β)− bj < 5

1 if (ai + β)− bj ≥ 5
;

for γ = 5, yij1 =

{
0 if (ai + β)− bj < 5

1 if (ai + β)− bj ≥ 5
.

A plot of these functions is shown in Figure 7. Here, we can see that if γ = 0,

then yij1 = 1 no matter what else occurs. In this case, if age preference is of no

importance to the mentee, then any age is a perfect match. Lastly, in the case when

the mentee selects 20+ years, the right-hand side does not taper off.

◦ Y2: Academic Discipline – The value for yij2 is calculated in an identical manner as

in the previous model, except for when the mentee places the utmost importance on

academic discipline. That is, if the mentee chooses a 4 or 5 on the Likert scale for the

importance of the academic discipline category, we assign yij2 = 1 when the mentee

and mentor have identical disciplines. To demonstrate this, we let γ ∈ {0, 1, 2, 3, 4, 5}
represent the selected importance ranking, then

for γ ∈ {0, 1, 2, 3}, yij2 =

{
bd if 0 ≤ d ≤ 2

0 if d > 2
,

for γ ∈ {4, 5}, yij2 =

{
1 if d = 0

0 if d > 0
,

where b = 1/3 and d represent the branching factor and depth, respectively, of the

academic discipline graph in Figure 3.

• New Criteria:
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Figure 7. The piecewise function used for age preference separated by the mentee’s se-

lection to the question in Figure 6. To illustrate the function, we assume ai = 30. The

x-axis is bj , which is mentor j’s age. Mentee selects 5 years older (top), 10 years older

(middle), or 20+ years older (bottom).

◦ Y6: Background – The drop-down answer list for this criterion has 19 options with

the possibility to list more than one. A connection between si and tj exists if at least

one match between all provided answers to the corresponding survey questions is

made. The calculation of the matching strength is identical to that of the previous

model for calculating yij3, yij4, and yij5. The numerical value, yij6, is calculated

as the number of matches divided by the total number of mentee responses to the

question. This variable is a broadened version of Z2, which was first-generation col-

lege student. The question involved here has more options to choose from and thus

creates more avenues to make a mentee-mentor connection on background.

◦ Y7: Mentee Goals – The drop-down answer list for this criterion has 8 choices with

the possibility to list more than one. Some mentee options include “build professional

connections,” “expand support network,” and “receive advice on international obli-

gations or issues.” The corresponding mentor survey asks if they would be able and

willing to help with or provide advice in these same categories. A connection be-

tween si and tj exists if at least one match between all provided answers to the

corresponding survey questions is made. The matching strength, yij7, is calculated

identically as the previous criterion.

◦ Y8: Gender Preference – This criterion is a generalized version of Z1 from the first

model. A connection between si and tj exists if the gender selected in the drop-down
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menu matches exactly. That is,

yij8 =

{
1 if (gender of si) = (gender of tj)

0 otherwise
.

This criterion has an “override” option dictated by the mentor’s response. On both

surveys we identify mentee and mentor gender; however, the mentor is permitted to

answer another question asking if they prefer to work with or not work with a spe-

cific gender. Therefore, depending on how they answer this question, the matching

value is reset to 0 or kept at 1 depending on the mentee’s gender.

◦ Y9: Race/Ethnicity – The drop-down answer list for this criterion has 12 choices with

the possibility to list more than one. A connection between si and tj exists if at least

one match between all provided answers to the corresponding survey questions is

made. The matching strength, yij9, is calculated identically as criterion Y7.

◦ Y10: Degree Preference – The drop-down answer list for this criterion has only 3

options, where the participant only selects a single answer. We calculate the matching

value as follows:

yij10 =

{
1 if (degree preference of si) = (degree obtained by tj)

0 otherwise
.

We now construct the weights for each of the newly defined criteria above. Since

each criterion has a linked ranking, we redefine k ∈ {1, 2, . . . , 10} as the criteria index

(i.e. p = 10). Based on the ranking that each mentee si submits, we let ωik be the weight

that student i gave to criterion k. Therefore, ωik ∈ {0, 1, 2, 3, 4, 5} for all i and k. Keeping

the notation Vk to represent the m× n matrix of weights for each criterion k, we define

a normalized weight element vijk using the following formula:

vijk =
ωik∑p
k=1 ωik

∀ j ∈ {1, 2, . . . , n}.

In the rare case that mentee si selects ωik = 0 for all k, we take this to mean that all

criteria are weighted equally and set vijk = 1/10 for all j, k.

Using this definition for the weights, we now define the compatibility matrix C whose

elements are

cij =

p∑
k=1

vijkyijk

Unlike the previous model, The normalization ensures that 0 ≤ cij ≤ 1 for all i, j.

That is, no “tie-breakers” or uniformly weighted variables exist. We now solve the two

formulations based on this new definition of compatibility with simulated data.

3.3 Results of LP and SMP Formulations

The revised survey includes Likert scales for the mentee to rank each criterion that is

important to them. This didn’t exist on the original survey. At the time of this work-

shop, we had Cohort 3 data associated to the existing survey. Some of these data were
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Table 3. Successful pairing metrics for each algorithm using revised survey with synthet-

ically generated data.

Metric Hungarian (LP) Gale-Shapley (SMP)

c-Ratio 95.32% 93.50%
Acad or Career 73.38% 71.33%

Acad and Career 20.82% 23.55%

Min c-Score 0.3335 0.1319
Mean c-Score 0.5450 0.5346
Max c-Score 0.8152 0.8261

transferred to the new survey by essentially moving existing answers. For example, the

original data included all 293 mentee responses for academic discipline. We salvaged this

data by moving it to spreadsheet based on the same question on the new survey. How-

ever, a significant portion of data does not exist, especially the rankings using the Likert

scale. To validate our models using the new survey format, we synthetically generated

data to fill these gaps. Likert scale Data that did not exist at all was uniformly randomly

generated. The age range preference (5 years older, 10 years older, or 20+ years older)

was also assigned uniformly. After analyzing the data for Cohort 3, we were able to get

a similar distribution for several rankings based on mentees’ answers to Question 9 (see

Figure 2). For example, approximately 120 of the 293 respondents answered that aca-

demic discipline was the most important matching criteria. Therefore, we used a binomial

distribution for this criterion with the appropriate parameters so that approximately 120

of the mentees’ answers are a 4 or 5. All other write-in answers were moved from the

Cohort 3 data. Therefore, we have a synthetically generated data set that is similar in

nature to Cohort 3.

The results are shown in Table 3. The Acad or Career and Acad and Career metrics are

notably much less than that of the real data, but that is due to the uniform distribution of

rankings for unknown data such as age preference or gender. In reality, many mentees say

that academic major and career interest are more important to them than factors such as

age. However, the c-Ratios are improved to a great extent. As with the previous results,

we see that Gale-Shapley generally finds that higher match but at the expense of having

a lower minimum compared to that of the Hungarian algorithm. The range of c values is

generally wider using the Gale-Shapley method while the Hungarian method attempts

to stay closer to the mean and give every mentee a decent matching. Overall, the results

are similar in terms of thresholding. The c-Ratio value is an important statistic here

since mean z values of 0.5346 and 0.5450 are, on their own, not an ideal case. However,

the large c-Ratio suggests that this may be true due to the entire pool of mentees and

mentors not sharing as high compatibility as in the actual Cohort 3 data.

Figure 8 shows a cumulative distribution of compatibility scores as well as a frequency

distribution using each algorithm. It is notable from the plots that the frequency of

matched compatibility scores appears to be distributed more Normally than the prior.

The vijk values are closer to uniformly distributed in this version of the assessment, so

that may be the cause of this phenomenon. However, we see that the algorithms preform

similarly with these data. The Gale-Shapley solution produces a few more matches with

a high compatibility but the Hungarian method balances with a higher proportion of
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Figure 8. Comparisons of the Hungarian and Gale-Shapley solutions for a synthetic data

set that preserves some characteristics of Cohort 3. Cumulative distribution (top) and

frequency distribution (bottom) of compatibility scores matched by each algorithm.

matches near the mean. From the frequency distribution, we see that the SMP formu-

lation does produce a wider range of compatibility scores with one match having a very

low score of 0.1319.

The results presented here are based on randomly generated data that replicates Cohort

3 to some extent. To get a better idea of how each model performs, we run a Monte Carlo

simulation using 1000 hypothetical data sets. In each data set, the age preference and

rankings are randomly distributed. A subset of the rankings follow a binomial distribution

based on Cohort 3 data and other subset follows a uniform distribution.

The results of the Monte Carlo simulation are shown in Figure 9. We can see that

both models have similar c-Ratio distributions with the LP model consistently doing

slightly better for the majority of the trials. The Hungarian method has a mean c-Ratio
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Figure 9. Results of the Monte Carlo simulation using 1000 hypothetical data sets. (Top)

Frequency distribution of c-Ratios for each algorithm. (Middle) Frequency distributions

for minimum c-Score, mean c-Score, and maximum c-Score. (Bottom) Frequency distri-

butions for proportion of matches that successfully paired academic discipline and/or

career interests.
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of 0.9526, while the Gale-Shapley method’s is 0.9313. The SMP formulation has slightly

more variation. As in the prior model using Cohort 3 data, the LP formulation does

better on this statistic since compatibility score is built into the objective function.

Referencing the three figures in the middle of Figure 9, the minimum matched compat-

ibility score for Gale-Shapley is generally lower on average than the Hungarian method.

This makes sense as the SMP formulation tends to get higher matches at the expense of

some having low compatibility. The average minimum c-Score is 0.1897 for SMP, while

the average minimum c-Score for LP is 0.2789. The difference in mean minimum values

is notable and the SMP formulation tends to have a slightly higher variability for this

statistic as well. The mean matched c-Score is relatively the same for each algorithm, with

the Hungarian method edging out with a mean of 0.5449 to 0.5330. Variability is much

lower for this statistic. The distributions of maximum c-Scores are also relatively equal,

with the Gale-Shapley winning slightly with 0.8616 to 0.8597. This is reasonable since

the Gale-Shapley finds highly compatible matches first. The variation in this statistic is

essentially the same for each model. The LP formulation still achieves about the same

amount of high c-Scores as the SMP model. Knowing the minimum c-Score is relatively

low for SMP compared to LP, the trade-off between obtaining that higher c-Score at the

expense of poor compatibility for a few other matches may not be worth it.

Finally, at the bottom of Figure 9, we see the performance of each algorithm on suc-

cessfully pairing mentees and mentors with the same academic discipline and/or career

interests. The average proportion for discipline and (or) career is 0.6947 (0.2015) for

SMP and 0.7222 (0.2185) for LP. The means for each model are relatively the same with

similar variation, but the Hungarian method is slightly better.

3.4 Deliverables

The two algorithmic solutions presented above can be used by the UD Graduate College

for future cohorts of the Grad LEAP program. The work done on this problem resulted

in two unique deliverables:

1. A new Google Forms survey that can be administered to potential mentees and men-

tors;

2. A user-friendly program (executable file) that takes the survey-generated Excel data

as input, and outputs two Excel files of proposed mentor/mentee pairings, one gen-

erated using the assignment problem formulation, and one generated using the SMP

formulation;

both of which are described in detail below.

As mentioned above, one of the main goals of this project was to develop a more robust,

user-friendly algorithm that finds “good” mentor/mentee matches given data from a

Google Form. During the development of the final algorithm, we created a new survey that

asks similar questions to the original survey brought to the workshop by the University

of Delaware Grad LEAP program. One of the main features of the new survey is that

graduate students may now assign a value of importance to each individual question on a

Likert scale, allowing them to create a unique set of weights for the question that allows

the final algorithm to make the best match for the student’s interests. Example questions
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are provided in Figures 5 and 6. In the final survey, there are 10 questions that ask the

student about the following topics, as well as how important it is that their answers

match with the answers of their mentor:

1.) Age gap preference

2.) Academic discipline

3.) Career interests

4.) Languages spoken

5.) Challenges faced in life

6.) Personal identities

7.) Goals of mentorship

8.) Gender identity

9.) Race/ethnicity

10.) Mentor academic degree attained

After students and mentors fill out the Google Form surveys, the results can be ex-

ported to Excel files (.xlsx), one with all the student data, and one with all the mentor

data.

The second deliverable of this work is a user-friendly algorithm that can be used by

the Grad LEAP program at the University of Delaware to generate a list of potential

mentor/mentee pairings. To generate this deliverable, the final algorithm was coded in

Python and was eventually converted to executable files that can be run on any kind of

computer.

In the python code, Excel files of the mentee and mentor survey data sets are imported

using Pandas. From there, the survey data is converted to numerical values using the

methods described above, and the compatibility matrix C is calculated. Then, the code

finds optimal mentor/mentee pairings using both the assignment problem formulation

and the SMP formulation, and generates Excel files containing the pairings, along with

their compatibility scores (cij). To help inform assignment decision-making, both the

mentors’ and mentees’ career interests and academic interests are reported in the output

file as well, along with the mentee’s best possible mentor match.

In order to run on both Mac and Windows computers, the python code was converted

into two executable files, a .exe file for Windows machines, and a Unix executable file

for Macs. The Mac program does not have a file extension, but will automatically be

executed by Terminal on Mac machines. Both of these files can be run on and computer

to execute the final algorithm, all that is needed is the Excel files with the mentor and

mentee survey responses. Details on how to execute these files properly is included in an

“Instructions” document along with the executable files and sample data files.

4 Machine Learning Approach

One approach that could be used is a classification model. To do this, a column of data

for the mentee is compared to the mentor’s data, and is given a score of 1 or 0. If the

mentor and mentee are a good match based on the data being compared, they score a

1, otherwise they score a 0. Since there are only two outputs, we can use a classification

model to determine if the mentor and mentee are a good match or not. Two different

algorithms are used for determining the strength of a potential match: a decision tree

and a random forest model. In the sections that follow, we construct each model and

compare the results.
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Table 4. Scores for the decision tree model.

Metric Academic Discipline Career Interests

Accuracy Score 0.77 0.74
Precision Score 0.75 0.79

Recall Score 0.78 0.73
Cohen-Kappa Score 0.54 0.48

Figure 10. Accuracy scores of the decision tree model for academic discipline and career

interests for 1000 random training states.

4.1 Decision Tree Model

The decision tree model is the first model that was implemented. The decision tree

creates a split on a specific decision variable based on the Gini index, which is a measure

of confidence for creating a node. A train/test split ratio of 40% was used to predict

how effective the model would be in a real-life scenario. Figure 10 shows the distribution

of accuracy scores resulting from the decision tree model for 1000 randomly generated

training states. Further, Table 4 shows several scores resulting from the decision tree

model by comparing academic discipline and career interests of each mentee/mentor.

From the data, we could see that a matching based on majors alone was correct about

77% of the time. From the precision score and given a good match, the model is right

about 75%. Using the recall score, it can correctly predict a good match about 78% of

the time. From the Cohen-Kappa score we can interpret that the model will agree with

manual pairing about 54% of the time. While these results may appear like a success,

there are some flaws in the model. Firstly, a limited data size for the training data may

have caused the model to not optimally create a decision tree for the data. This can be

seen with the career interests, since there are more parameters that need to be compared

than with academic discipline alone. Secondly, depending on the training data, a bias

may occur within the tree.

In order to minimize bias from the training data, the goal is to minimize the standard

deviation of the accuracy scores, as well as just observing the outliers to see if they

make sense, in this case, we want to beware of maximums. While the minimums are bad

objectively, by having a bad accuracy score, the maximums would need further testing
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Table 5. Accuracy Score statistics for the decision tree model.

Statistic Academic Discipline Career Interests

Minimum 0.58 0.52
Maximum 0.98 0.91

Mean 0.84 0.77
Median 0.83 0.78

Standard Deviation 0.065 0.058

Table 6. Scores for the random forest model.

Metric Academic Discipline Career Interests

Accuracy Score 0.91 0.72
Precision Score 0.92 0.85

Recall Score 0.92 0.63
Cohen-Kappa Score 0.83 0.45

with different training data in order to verify the accuracy. Below is a numerical analysis

of the histogram data.

As seen in Table 5, the maximums of 0.98 and 0.91 are unrealistic and should be

analyzed with further testing data. While the mean is high, with a correct prediction

84% of the time for majors and 77% of the time for career interests, it must be taken

into account that the standard deviation is also large. With a large standard deviation,

an assumption could be made that an average decision tree may bias possible outlier

matches. Ideally, we would want a model that can handle the bias, and perhaps create

cases for those outlier matches.

4.2 Random Forest Model

A random forest model is the second model that is implemented to solve the classification

problem. A random forest works by using multiple decision trees to create a prediction,

unlike the single decision tree used in the first model. In order to keep consistency be-

tween the two models, a train/test split ratio of 40% was used again. One downside is

that the amount of trees in the random forest, known as estimators, must be optimized

beforehand. The graph in Figure 11 shows the accuracy score based on the amount of

trees in the forest.

One observation that should be made from the graph is the convergence of the accuracy

score as the number of estimators increase. While it is correct to say that if we make the

amount of trees large that the model will be optimal, this lack of optimizing beforehand

will cause an unnecessary increase in runtime, since there will be more trees to traverse.

The optimal amount of trees for the major random forest is 50 trees, and the optimal

amount of trees for career interests is 95 trees. Using those values, we present the results

of the random forest accuracy scores for 1000 random training states in Figure 12. We

can also calculate statistics about the random forest model. These statistics are shown

in Table 6.

As we can see from the data, the random forest for major comparison has a Cohen-

Kappa Score of 0.83, which is a drastic improvement over the decision tree model. For
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Figure 11. Optimizing the number of estimators using academic discipline as the match-

ing criteria.

Figure 12. Accuracy scores of the forest model for academic discipline and career interests

for 1000 random training states.

career interests however, there wasn’t a large change in the scores. With all that being

said, the precision score for career interests with the random forest is a increase from the

decision tree model, with the trade off that the random forest has a worse recall score

than the decision tree. Overall, the random forest is still better at identifying a good

match for career interests, it just is not better at identifying a bad match.

One of the biggest problems with the decision tree was the underlying bias from the

selection of the training data, and that to eliminate bias, the standard deviation of the
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Table 7. Accuracy score statistics for the random forest model.

Statistic Academic Discipline Career Interests

Minimum 0.83 0.69
Maximum 0.94 0.76

Mean 0.90 0.71
Median 0.92 0.72

Standard Deviation 0.022 0.011

accuracy scores should be minimized. With the random forest, our goal was to minimize

the bias from the decision tree. These results can be seen in Table 7.

The goal of minimizing the standard deviation was a success. This means that the new

model should answer different training data more accurately if presented with it. Another

observation is the discontinuity in the bars of the histograms. This may have been caused

from yet another bias in the training data. However, the difference in accuracy score bars

is much smaller than those in the decision tree model.

4.3 Future Implementation

With the models above, a successful classification model was posed for each question in

the survey. However, while this model is usable, there exists a flaw in the classification

model: the model doesn’t score a pairing, but instead just states if the match is good or

bad. In order to get a score for matches, we need a regression algorithm, but there is no

test data for a regression algorithm, since the given data doesn’t have scores associated

to the matches. To do this, we use the classification models to give us a score. Let ~m be

the vector of matched data types, and let ~s be the importance scores of each question

for mentees. The score for a matching would be as follows:

score =
~m · ~s∑p
k=1 sk

where p is the number of matching criteria. The proposed scoring formula has a range

between 0 and 1, where if the mentor and mentee are a perfect match, ~m would be a

vector of 1’s, so the numerator and denominator would be equal. Applying this scoring

formula to a large dataset would allow a regression model to be successfully created.

5 Conclusions

The objective of this workshop was to develop a practical model for determining optimal

mentor-mentee pairings for the UD Graduate College’s GradLEAP mentorship program.

We believe this objective has been successfully met through the use of two distinct math-

ematical approaches: a linear programming formulation, which can be reinterpreted as an

assignment problem and solved using the Hungarian method, and a stable marriage prob-

lem formulation, solvable via the Gale-Shapley algorithm. Both methods are integrated

into a user-friendly executable file (.exe). The input for this program is an Excel sheet

containing all mentor and mentee responses from a restructured Google Form survey,
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and the output is a list of optimal pairings generated by each algorithm. This program

is designed for use in future iterations of the GradLEAP mentorship program.

The mathematical formulations presented offer a solution to the proposed problem;

however, additional human intervention may be necessary to identify potential mis-

matches or suboptimal pairings. Currently, the matching algorithms do not consider

responses to free-response questions. We anticipate that the Graduate College can use

the model’s output and further explore compatibility between pairs by analyzing the

free-response answers.

Future analyses could incorporate deep learning and natural language processing tech-

niques to better address this aspect. Alternatively, a keyword search for terms such as

“important,” “need,” or “want” could be employed to flag mentees and ascertain their

specific priorities.

Moreover, further analysis is needed to determine the factors that contribute to a

successful match. For example, a survey question asking mentees how critical it is for them

to be matched immediately could help establish an appropriate threshold. Another area

for future investigation is the definition of vijk. Currently, it is calculated individually for

each mentee, but there are inter-mentee factors that should be considered. For instance,

if one mentee assigns a score of 5 to every criterion, the vijk value would be the same as

if another mentee had rated each criterion as a 1. However, it is reasonable to assume

that achieving an exact match for the first mentee might be more important than for the

second.

Our work compares the performance of each model and illustrates the process by which

each mentor-mentee pair is created. The Graduate College initially proposed the idea of

creating optimized pairings in “waves,” given that mentors and mentees continually apply

to the GradLEAP mentorship program. This rolling approach to pairing could benefit

from the unique characteristics of each solution.

The Hungarian method, which solves a linear programming problem, tends to generate

a larger number of pairings with compatibility scores clustered around the mean. In

contrast, the Gale-Shapley method produces pairings with greater variation around the

mean score.

The solutions presented in Section 2.5 are based on the Cohort 3 data set, where the

mean compatibility score is 0.5636. For this data set, 62.80% of the pairs generated by the

LP formulation have a compatibility score within 0.2 of the mean, whereas only 54.61%

of the pairs from the SMP formulation fall within this range. However, when considering

pairs with a compatibility score above 0.8, the SMP formulation yields 17.06% of such

matches, compared to 10.92% for the LP formulation.

Based on these findings, we recommend that the Graduate College use the SMP for-

mulation during the early stages of the application process, as it is more likely to produce

highly compatible matches. As the number of applicants begins to level off, the LP for-

mulation should then be applied to generate optimal pairings with a mean level of com-

patibility for the remaining participants. By using both models in waves, the program

can optimize compatibility throughout the entire application process.



30 Brown et al.

References

[1] Hillier, F. S., and Lieberman, G. J. 2015. Introduction to operations research.

McGraw-Hill.

[2] Gale, D., and Shapley, L. S. 1962. College admissions and the stability of marriage.

The American Mathematical Monthly, 69, 9–15.


	Introduction
	Formulations Based on Existing Survey Data
	Criteria and Weights
	Compatibility Score
	Assignment Problem Formulation 
	Stable Marriage Problem Formulation 
	Results of LP and SMP Models

	Formulations Based on Revised Survey
	Revised Survey
	New and Modified Criteria
	Results of LP and SMP Formulations
	Deliverables

	Machine Learning Approach
	Decision Tree Model
	Random Forest Model
	Future Implementation

	Conclusions

