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Abstract

The purpose of this dissertation is twofold: to introduce a unifying framework for
what we call odd cover problems and to provide new insight into graph saturation.

An odd cover of a graph G is a collection of graphs such that every edge of G occurs
in an odd number, and every nonedge in an even number, of graphs in the collection.
We direct our interest towards finding the minimum cardinality of an odd cover of G
with graphs from specific classes, in the vein of partitioning results like the Graham-
Pollak theorem. Mainly, we focus on the classes of cliques and bicliques, but we also
note results on odd covers with tricliques, paths (relating to Gallai’s conjecture), and
cycles. We find this value for various graphs G in each setting, including for all odd
(and some even) cliques in the setting of bicliques, marking significant progress on a
1988 problem of Babai and Frankl. Deep relations to linear algebra are demonstrated:
the minimum cardinality of an odd cover of a graph with cliques is either equal to or
one more than its minimum rank over the binary field; and the minimum cardinality
of an odd cover of a graph with bicliques is bounded above by the binary rank of its
adjacency matrix and below by half this rank.

In Part II, we turn our attention to more extremal problems. The saturation num-
ber of a graph H is the minimum number of edges in an n-vertex graph which does
not contain H as a subgraph, but to which the addition of any extra edge creates a
copy of H. Saturation numbers of cliques were determined in 1964 by Erdős, Haj-
nal, and Moon, complementing one of the earliest extremal results: Turán’s theorem.
We prove a general lower bound on the saturation number and use it to determine
the saturation numbers of unbalanced double stars asymptotically, resolving the last
open cases of asymptotic saturation numbers of trees with diameter at most 3. We
also provide upper bounds on the saturation numbers of certain trees of larger diam-
eter, called caterpillars. Finally, we examine an edge-colored version of saturation,
analogous to the rainbow Turán number, proving bounds on the (proper) rainbow
saturation numbers of double stars.
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Chapter 1

Introduction to odd covers

The first part of this dissertation introduces a unifying framework for a class of

problems we call “odd cover problems:”

Given a graph G and a class of graphs H, what is the minimum number

ϱ of graphs Hi in H, i ∈ {1, . . . , ϱ}, such that every edge in G is in an

odd number of the Hi and every nonedge in an even number?

An odd cover of the square, C4, with two triangles is depicted in Figure 1.1. This

is a minimum odd cover of C4 with cliques, for C4 is not itself a clique. This is also

an odd cover of C4 with cycles, but it is not minimum in this case, for C4 is itself a

cycle.

Odd cover problems generalize well-studied graph partitioning problems, whereby

−→

Figure 1.1: An odd cover of the square, C4, with two triangles
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the graphs H1, . . . , Hϱ are edge-disjoint. Tools from linear algebra are common in the

study of such partitions, and we will see that they have a natural analogue in the

setting of odd covers. Another well-studied class of problems, closely related to odd

cover problems, are graph covering problems, whereby the graphs H1, . . . , Hϱ cover

every edge in G at least once and do not contain any edges not present in G.

The term odd cover is inspired by the first such question in the literature, “the odd

cover problem,” due to Babai and Frankl in 1988 [6]. They asked for the minimum

number of bicliques needed to cover every edge of the complete graph on n vertices

an odd number of times. Until recently, the answer to this question was not known

for any positive density subset of the integers. We will return to this problem in

Chapter 3, but first, we step back to provide some basic definitions and notations.

1.1 General definitions and notations

This dissertation concerns itself with the combinatorial theory of graphs. Graphs un-

derpin a wide variety of real-world problems, from the spread of diseases, to electrical

circuits, to chemistry and molecular biology. By a graph, we refer to a pair of sets V

and E. The former can be any finite set, whose elements we call vertices. The latter is

a subset of
(

V
2

)
, the set of all unordered pairs of distinct vertices in V , whose elements

we call edges. In the literature, these are sometimes called finite simple graphs, and

the term “graph” can include infinite vertex sets, multiple edges joining the same pair

of vertices, and edges whose endpoints are equal. When the vertex set or edge set

of a graph G is not specified, we denote these sets respectively by V (G) and E(G).

The order of G, denoted |G|, is the cardinality of its vertex set, and its size ∥G∥ is

3



the cardinality of its edge set. Given disjoint subsets A and B of V , we denote by

eG(A, B), or simply by e(A, B), the number of edges in G with one endpoint in A

and the other in B.

The degree of a vertex v in a graph G is the number of edges incident to it

(i.e., the number of edges in which v occurs), denoted dG(v), or simply d(v) when

G is clear from context. The open neighborhood, or simply neighborhood, of v is

the set of vertices adjacent to it, denoted NG(v) or N(v). The closed neighborhood

of v is N(v) ∪ v, denoted NG[v] or N [v]. We give special names to those vertices

whose neighborhoods are either empty or complete; an isolated vertex is one with no

neighbors, and a dominating vertex v is one with N [v] = V . An independent set in G

is a set of pairwise nonadjacent vertices.

A union of graphs G and H is the graph with vertex set V (G) ∪ V (H) and edge

set E(G) ∪ E(H). If V (G) and V (H) are disjoint, we call it a disjoint union, denoted

G + H. If we only write G + H, it is assumed that V (G) and V (H) are disjoint, and

when we write G + G or tG, we refer to the disjoint union of two or t copies of G,

respectively.

A graph class is a collection of graphs sharing a specific property. We take this

opportunity to define various graph classes appearing in this dissertation. Let V be a

set of n vertices. The complete graph on V is the graph with edge set
(

V
2

)
. When it is

not necessary to specify the vertex set, we denote an n-vertex complete graph by Kn.

A graph G on V is called bipartite if V can be partitioned into two independent sets

in G, tripartite if there is a partition into three independent sets, and k-partite, for a

given positive integer k, if there is a partition into k independent sets. A complete k-

partite graph Ka1,...,ak
is a k-partite graph, with partite sets of cardinalities a1, . . . , ak,

4



which contains all edges between differing partite sets. We call a complete bipartite

graph a star if either of its partite sets contains only one vertex. We also use the

terms cliques, bicliques, and tricliques to refer to complete graphs,1 complete bipartite

graphs, and complete tripartite graphs, respectively. An n-clique is a clique of order

n (not to be confused with a biclique or triclique).

A path Pn is a graph with edge set {v1v2, v2v3, . . . , vn−1vn} under some ordering

of the vertices in V . The graph obtained by adding the edge v1vn to Pn is called a

cycle Cn. We will make use of the notation K for the class of cliques, B for bicliques,

and T for tricliques. The classes P of paths and C of cycles will also arise.

We will finally require notation to compare the asymptotic growth of two functions

f and g of a variable n. We write f = O(g) when lim supn→∞
f(n)
g(n) < ∞ and conversely

write f = Ω(g) when lim infn→∞
f(n)
g(n) > 0. We also write f = o(g) when limn→∞

f(n)
g(n) =

0.

1.2 A brief history of graph partition-

ing and covering problems

We begin with a summary of relevant results on graph partitions and coverings.

By a cover of a graph G, we refer to a collection of graphs H1, . . . , Hk such that

E(G) = ∪k
1E(Hi). If the Hi are edge-disjoint, we call the cover a partition of G. A

complete history of partitioning and covering problems would require more space than

we have here, so we stick to those results most relevant to the odd cover problems we
1This is a slight abuse of terminology: a clique in a graph is technically a set of vertices which

induces a complete subgraph, just as an independent set induces a graph with no edges.
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study. We direct the reader to [86] for a more complete survey.

In the 1960’s, a flurry of papers appeared on the subject of graph partitions and

coverings. In 1966, Erdős, Goodman, and Pósa initiated the study of partitions and

coverings with cliques [41].

Theorem 1.1 (Erdős-Goodman-Pósa theorem [41]). Every graph G of order n can

be partitioned into at most ⌊n2/4⌋ cliques, and further, these can be taken to be edges

and triangles.

Sharpness of the Erdős-Goodman-Pósa theorem follows from a consideration of the

biclique K⌊n/2⌋,⌈n/2⌉ (also known as the bipartite Turán graph T 2(n); see Section 4.1)

which has ⌊n2/4⌋ edges and no triangles. Note that this also solves the analogous

problem for coverings. Győri and Tuza conjectured a stronger statement in 1987,

confirmed in [69] only five years ago, that every graph of order n has a partition

H1, . . . , Hk into edges and triangles such that ∑ |Hi| ≤ (1/2 + o(1))n2.

Let cp(G) denote the minimum cardinality of a clique partition of a graph G.

While it easy to see that cp(Kn) = 1, it is not obvious how many cliques of order

strictly less than n are needed to partition Kn. The answer to this problem predates

the study of clique partitions, and is known as the de Bruijn-Erdős theorem. We

phrase their result in terms of clique partitions for consistency.

Theorem 1.2 (de Bruijn-Erdős theorem [34]). Let n be an integer, n ≥ 3. If

{H1, . . . , Hk} is a clique partition of Kn and k ≥ 2, then k ≥ n. Further, this

bound is attained if and only if either |H1| = n − 1 and |Hi| = 2 for i ∈ {2, . . . , n}; or

n = q2 − q + 1, every |Hi| = q, and every v ∈ V (Kn) is occurs in exactly q of the Hi.

As a side note, when q − 1 is prime, the latter sharpness condition is equivalent

to the existence of a projective plane of order q − 1. Indeed, the Fano plane provides
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a partition of K7 into seven 3-cliques [25]. De Bruijn and Erdős proved their result

in terms of set systems and derived as a corollary that, for any n pairwise connected

points in the real projective plane, not all on a line, the number of lines is at least n.

The value of cp(G) is known for graphs G in various different classes. There is

also a large amount of literature on the minimum cardinality cc(G) of a covering of

G with cliques, for graphs G in various classes. As these results are less relevant to

our current study, we direct the reader to [86].

The maximum difference cp(G)−cc(G) and maximum ratio cp(G)/ cc(G) in terms

of the order n of G have also been studied. For the interested reader, cp(G)−cc(G) ≥
n2

4 − n3/2

2 + n
4 [23], and n2

64 < cp(G)
cc(G) ≤ n2

12 [40]. We demonstrate a much larger difference

and ratio between cp(G) and the minimum cardinality of an odd cover with cliques

in Corollary 2.24.

The problem of partitioning or covering the edges of a graph with a minimum

number of bicliques has a rich history as well. The study of biclique partitions (collec-

tions of bicliques which partition the edges of a given graph) was initiated by Graham

and Pollak [54] in the context of finding efficient “loop-switching” routing algorithms

for the Bell System.

Theorem 1.3 (Graham-Pollak theorem [54]). At least n − 1 bicliques are necessary

to partition the edges of Kn.

That n − 1 bicliques are sufficient to partition E(Kn) is evident from a simple

star partition, as depicted in Figure 1.2a. The Graham-Pollak theorem is a famous

result in algebraic graph theory; the initial proof of the lower bound relies on the

fact that there are n − 1 negative eigenvalues of the adjacency matrix of Kn. The

7



(a) A partition of K5 into four bicliques (b) An odd cover of K5 with three bicliques

Figure 1.2: A minimum partition, on the left, and a minimum odd cover, on the right, of
K5 with bicliques

adjacency matrix of a graph G, denoted A(G) or simply A, is a square matrix whose

rows and columns are indexed by the vertices of G. The entry Ai,j is 1 if ij ∈ E(G)

and is 0 otherwise.2 The adjacency matrix is an incredibly useful tool, not only for

the Graham-Pollak theorem. To give a couple of examples, the entries of Ak count

the number of walks of length k between pairs of vertices in G, and the eigenvalues of

A provide a wealth of information about G, such as its size and whether or not it is

bipartite. To this day, there is no known proof of the Graham-Pollak theorem which

does not involve linear algebra in some form.

On the covering side of things, one can find much smaller collections of bicliques

which cover Kn. Alon proved that the minimum number of bicliques needed to cover

Kn is ⌈log2 n⌉ [4]. Fan Chung wrote two lovely papers in 1980 and 1981 on coverings

and partitions of graphs with cliques, bicliques, and forests [30, 31]. In the former

paper (in which the notation ϱ(G, H), which we will adapt for our odd cover purposes,

is used for the minimum cardinality of a covering of G with graphs from H), she proved

that limn→∞ ϱ(n)/n = 1, where ϱ(n) denotes the maximum value of ϱ(G, B) over all

graphs G of order n. This matches the natural upper bound afforded by the star

partition of Kn, as in Figure 1.2a.
2“The” adjacency matrix is actually a class of matrices, but ordering the vertices does not concern

us here.
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Figure 1.3: A minimum vertex cover of a tree is depicted with hollow vertices and a maxi-
mum matching with highlighted edges.

Coverings and partitions with stars are some of the oldest topics in the area,

dating at least to two 1931 papers of Kőnig [62] and Egerváry [37]. A vertex cover of

a graph G is a subset of V (G) which contains at least one endpoint of every edge in

G; equivalently, a vertex cover is the complement of an independent set in G. From

a vertex cover U , we obtain a cover of G with stars K1,d(u), centered at each vertex u

in U . By deleting some edges from such a star cover, we obtain a partition of E(G)

into stars.

In order to state the famed result known as the Kőnig-Egerváry theorem, which

we will reference again in our study of biclique odd covers of trees, we define the

vertex cover number τ(G) to be the minimum cardinality of a vertex cover of G. A

matching in G is a set of edges which share no endpoints, and the matching number

m(G) is the maximum cardinality of a matching in G. Figure 1.3 depicts a maximum

matching (in shaded edges) and minimum vertex cover (in hollow vertices) of a tree

T . Note that every edge in the matching is incident to a distinct vertex in the vertex

cover; indeed, m(G) and τ(G) align in this case. Kőnig showed that these parameters

align for all bipartite graphs.

Theorem 1.4 (Kőnig-Egerváry theorem [37,62]). For any bipartite graph G, τ(G) =

9



m(G).

Generalizing partitions with stars in a different direction than Graham and Pollak,

in 1964, Nash-Williams determined the minimum number of acyclic graphs, or forests,

needed to partition G. This is known as the arboricity of G, denoted a(G). A certain

notion of density in G provides a natural lower bound on a(G): each forest in a

partition contains at most |H|−1 edges from any subgraph H of G, and thus at least

∥H∥/(|H| − 1) forests will be required. Nash-Williams proved that a(G) is entirely

determined by this density.

Theorem 1.5 ([76]). For any graph G,

a(G) = max
H⊆G

⌈
∥H∥

|H| − 1

⌉
.

Theorem 1.5 can be phrased in the setting of graphic matroids. Indeed, the natural

analogue holds for the problem of partitioning the independent sets of an arbitrary

matroid, as proven by Edmonds the following year [36].3

A forest which is connected (contains a path between any pair of vertices) is

called a tree. Note that, for the complete graph Kn, Theorem 1.5 gives a(Kn) =⌈(
n
2

)
/(n − 1)

⌉
= ⌈n/2⌉. In particular, for even n, every forest in an optimal partition

of Kn is an n-vertex tree, also known as a spanning tree. In 1978, Chung proved that

every connected graph of order n has a partition into ⌈n/2⌉ trees [29].

In a different direction, rather than adding a connectivity restriction to the ar-

boricity problem, one can restrict the tree components of a forest. A component of a

graph is a maximal connected subgraph. The problem of partitioning a graph into a
3Recently, Frederickson and Michel studied circuit decompositions of Eulerian binary matroids

in [49] and generalized the notion of odd covers of graphs with cycles to this setting.
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minimum number of linear forests, forests in which every component is a path, was

introduced in [1]. This minimum is called the linear arboricity of G, denoted la(G),

conjectured to depend solely on the maximum degree ∆(G) of a vertex in G.

Conjecture 1.1 (Linear arboricity conjecture [1]). For any graph G with maximum

degree ∆, la(G) ≤ ⌈(∆ + 1)/2⌉.

Alon showed that the linear arboricity conjecture holds asymptotically with ∆ [3],

but the conjecture remains open in general.

Adding both of the above restrictions to the arboricity problem, we obtain the

problem of partitioning a graph with paths. According to a 1968 paper of Lovász [70],

Erdős asked for the minimum number of paths needed to partition the edges of any

connected n-vertex graph, and Gallai made the following conjecture:

Conjecture 1.2 (Gallai’s conjecture). The edges of any graph G can be partitioned

into at most ⌈n/2⌉ paths.

This conjecture has been proven true for various classes of graphs, including planar

graphs [11], graphs of maximum degree at most 5 [14], and graphs whose even-degree

vertices induce a forest [82], yet it remains open in general. Lovász showed that ⌊n/2⌋

paths and cycles suffice [70] (which implies that n paths suffice). Fan proved that the

analogue of Gallai’s conjecture holds in the setting of path coverings [46].

In a similar vein to the result of Lovász above, a longstanding conjecture was

made in [41], the same paper in which Theorem 1.1 was proved. Often called the

Erdős-Gallai conjecture, it states that every graph of order n can be partitioned into

O(n) cycles and edges. It is well-known that every Eulerian graph (all vertices having

even degree) can be partitioned into cycles; an equivalent conjecture states that O(n)

cycles suffice to partition an Eulerian graph.
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We may have misled the reader in saying that the Kőnig-Egerváry theorem is

one of the oldest results in the study of partitions and coverings. The study of

partitioning an odd clique Kn into Hamiltonian cycles (spanning cycles), dates back

to the problème de ronde posed by Lucas in 1883 [73] whose solution is attributed

to Walecki in 1892. The problem is to arrange 2n + 1 people around a single table

on n successive nights so that nobody is seated next to the same person more than

once. In graph theoretic terms, Walecki determined that every odd clique K2n+1 can

be partitioned into n cycles.

1.3 Odd covers of graphs

Odd covers provide a natural generalization of graph partitions. We provide here

some general definitions and observations before proceeding to analyze specific types

of odd covers. Let G be a graph. We say that a collection of graphs H1, . . . , Hk

comprises an odd cover of G if every edge in G occurs in an odd number of the Hi

and every nonedge in an even number. If the graphs Hi are all members of the same

graph class H, we call {H1, . . . , Hk} an H-odd cover of G. Note that an H-odd cover

of G always exists when K2 ∈ H, for we can partition G into its individual edges.

The H-odd cover number of G is the minimum cardinality of an H-odd cover of G,

denoted ϱ2(G, H).

There are a couple of different perspectives one can take on odd covers. The

symmetric difference of two sets X and Y , denoted X△Y , is the set (X∪Y )−(X∩Y ).

Note that the symmetric difference operator is associative, and that X1△X2△· · ·△Xk

consists of those elements occurring in an odd number of the Xi. For graphs H1 and
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H2, we let H1 △ H2 denote the graph with vertex set V (H1) ∪ V (H2) and edge set

E(H1) △ E(H2). For a graph G without isolated vertices, an H-odd cover of G is

thus a set of graphs H1, . . . , Hk ∈ H whose symmetric difference is G.

Alternatively, we might take an algebraic perspective. Let G be a graph on vertex

set V . A collection of graphs H1, . . . , Hk on subsets of V is an odd cover of G if

and only if A1 + · · · + Ak (mod 2) = A(G), where Ai denotes the adjacency matrix

of the graph on V consisting of Hi and isolated vertices on V − V (Hi). When the

graphs in H have low rank over F2 (the finite field of order 2), the subadditivity of the

rank function provides a helpful lower bound: the rank rk2(A(G)) of A(G) over F2 is

bounded below by the sum of the ranks of the A(Hi). As we will show in Chapter 3,

the resulting lower bound of rk2(A(G))/2 on the B-odd cover number is sharp for

many graphs G. In terms of tricliques, whose adjacency matrices also have binary

rank 2, we have ϱ2(G, T ) = rk2(A(G))/2 for every graph G (see Theorem 3.17).

In Chapter 2, we will show that minimum odd covers with cliques also have deep

algebraic roots.

1.4 A note on paths and cycles

Before diving into odd covers with cliques and bicliques, and their algebraic impli-

cations, we take a moment to address the problems of finding minimum odd covers

with paths or cycles. These parameters, ϱ2(G, P) and ϱ2(G, C), are much less algebraic

than the parameters ϱ2(G, K), ϱ2(G, B), and ϱ2(G, T ), but we would be remiss not to

mention some of the results obtained by the author, Steffen Borgwardt, Eric Culver,

Bryce Frederickson, Puck Rombach, and Youngho Yoo in [15].
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· · · · · ·

Figure 1.4: A disjoint union of cycles has an odd cover with two paths, though the minimum
number of paths needed in a partition or covering can be arbitrarily large.

We recall Gallai’s conjecture that the edges of any graph of order n can be par-

titioned into at most ⌈n/2⌉ paths. Note that this would be best possible by Theo-

rem 1.5, since the arboricity a(G) = maxH⊆G ⌈∥H∥/(|H| − 1)⌉ provides a lower bound

on the number of paths in a partition, ∥Pn∥ = n − 1, and ∥Kn∥ = n(n − 1)/2. While

ϱ2(G, H) can be significantly smaller than the minimum size of a path partition, as

shown in Figure 1.4, each path in a P-odd cover can still only contribute at most

|H| − 1 edges to any subgraph H of G, and thus ϱ2(G, P) ≥ a(G).

Two other relatively immediate lower bounds on ϱ2(G, P) derive from the number

of odd-degree vertices in G, denoted vodd(G), and the maximum degree ∆(G). We

note that, in a P-odd cover of G, every path contributes at most 2 odd-degree vertices

to G, even if those paths share edges. Further, every path contributes at most 2 to

the degree of any vertex in G. Thus,

ϱ2(G, P) ≥ max
{

vodd(G)
2 ,

⌈
∆(G)

2

⌉}
. (1.1)

While the minimum cardinality of a path partition can be arbitrarily far from either

of these two lower bounds, we prove in [15] that ϱ2(G, P) is not more than a factor

of two larger. In particular, one of the main results of our paper is the following

theorem.
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Theorem 1.6 ([15]). For any graph G,

ϱ2(G, P) ≤ max
{

vodd(G)
2 , 2

⌈
∆(G)

2

⌉}
.

Despite the constant factor of 2 on ⌈∆(G)/2⌉ in Theorem 1.6, we have yet to find

a graph for which ϱ2(G, P) differs significantly from (1.1). Indeed, we do not know

of any graph G with ϱ2(G, P) > max {vodd(G)
2 ,

⌈
∆(G)+1

2

⌉
} [15, Problem 1].

A variant of ϱ2(G, P) provides an even closer relationship between path odd covers,

vodd(G), and ∆(G). If we allow for edges in G to be subdivided (i.e., replace uv by a

path uw1 . . . wkv, k ≥ 1), then we are able to obtain the lower bound (1.1) precisely

for any graph G which is not the disjoint union of at least one a cycle with at most

one path [15].

We note that the lower bound of ⌈∆(G)/2⌉ on ϱ2(G, P) is not far away from the

conjectured upper bound for the linear arboricity of G (Conjecture 1.1). In fact, P-

odd covers are more closely related to linear forest partitions than one might expect at

first glance. If O is a P-odd cover of G with k paths, then by deleting from all paths

in O any edges which are covered an even number of times, as well as from all but

one path in O the edges covered an odd number of times, we obtain a collection of k

linear forests which partition G. Thus, the linear arboricity of G provides yet another

lower bound on ϱ2(G, P). We were able to prove that a second variant of ϱ2(G, P)

aligns precisely with the linear arboricity of G in the case of Eulerian graphs. That

is, the minimum value of ϱ2(G′, P) over all graphs G′ obtainable from an Eulerian

graph G by adding isolated vertices is equal to the linear arboricity of G [15].

It is perhaps a surprising fact that adding isolated vertices to a graph can decrease

the minimum cardinality of a P-odd cover. However, we present examples of graphs
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for which this is the case in [15]. Indeed, we prove that for any odd integer k at least

3, there exists an Eulerian graph G with ϱ2(G, P) = k + 1 for which, upon adding

some number of isolates to obtain a graph G′, the value ϱ2(G′, P) drops to k. The

proof of this fact used Walecki’s cycle decomposition of an odd clique, discussed in

Section 1.2.

We proved analogous results for these two variants of ϱ2(G, P) in the setting of

cycle odd covers of Eulerian graphs: for some graph G′ obtained by adding some

number of isolates to G, ϱ2(G′, C) ≤ la(G′); and, if G is not a disjoint union of two or

more cycles, then ϱ2(G′′, C) = ∆(G)/2 for some subdivision G′′ of G. The arguments

used to prove Theorem 1.6 also lend themselves to C-odd covers. We proved that

ϱ2(G, C) ≤ ∆(G) for every Eulerian graph G [15].
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Chapter 2

Clique odd covers (subgraph com-

plementation)

Here, we examine ϱ2(G, K). This parameter was introduced by the author, Christo-

pher Purcell, and Puck Rombach in [19]. As shorthand, and in keeping with the

notation (though not the terminology) we used in [19], we use c2(G) to denote the

minimum number of cliques in a K-odd cover of a graph G.

Note that taking the symmetric difference of a graph G with a clique is the same

as complementing the edges and nonedges of an induced subgraph. This is known as

a subgraph complementation of G, as defined by Kamiński, Lozin, and Milanič in [58].

Versions of this operation appeared earlier; for instance, Bouchet used successive com-

plementations of neighborhoods of vertices to characterize the intersection graphs of

chords on a circle [16]. A graph obtainable from G via successive local complemen-

tations and vertex deletions is known as a vertex-minor and has deep connections to

rankwidth [79]. Recently, the problem of determining whether G is just one subgraph

complementation away from being in a certain class, posed in [48], has also received
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considerable attention.

Since a graph G has c2(G) ≤ k if and only if it can be obtained via at most k

successive subgraph complementations from the graph on V with no edges, we origi-

nally introduced K-odd covers under the name “subgraph complementation systems.”

However, we use the term odd cover here for consistency.

We came to this problem neither via a study of subgraph complementations, nor

via Babai and Frankl’s “odd cover problem” [6], but via a post on MathOverflow

by Vincent Vatter [91]. Vatter asked whether anybody had studied the problem of

“expressing the edges of a given graph as the sum of edge sets of graphs modulo 2.”

We came to find that this problem has deep algebraic roots, relating closely to the

well-studied minimum rank problem for graphs. The results we describe have been

applied in the context of invertibility of oriented graphs [10] and in the context of

quantum networks [87].

2.1 Preliminary results and examples

We begin by examining some of the basic, purely combinatorial, properties of K-odd

covers. In a number of respects, the K-odd cover number behaves nicely (in many

others, it is likely to surprise you). For instance, it is monotone with respect to taking

induced subgraphs; these are subgraphs obtained by deleting a subset of vertices from

a graph, along with their incident edges. We denote by G[U ] the induced subgraph

of G with vertex set U ⊂ V (G). Alternatively, if U ′ = V (G) − U , we write G − U ′

for G[U ]. The following observation is made in passing in [19].

Proposition 2.1. If F is an induced subgraph of a graph G, then c2(F ) ≤ c2(G).
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Proof. If {H1, . . . , Hϱ} is a minimum K-odd cover of G, and U is the subset of V (G)

such that F = G[U ], then {H1[U ], . . . , Hϱ[U ]} is a K-odd cover of F .

A graph class which is closed under taking induced subgraphs is called a hereditary

class. Proposition 2.1 states that the class {G : c2(G) ≤ k} is hereditary for any

positive integer k. A hereditary class X can always be defined by a collection F of

forbidden induced subgraphs; that is, G ∈ X if and only if G does not contain as an

induced subgraph any graph F in F . For instance, one can take F to be the set of all

graphs not in X . It is not always the case that there exists a finite set of forbidden

induced subgraphs (to characterize the class of bipartite graphs, for example, one

must forbid all odd cycles), but we prove this to be the case for {G : c2(G) ≤ k} in

Theorem 2.22 of Section 2.4. We explicitly state the minimum-cardinality sets F for

k ≤ 3, though a complete characterization seems unlikely as the cardinalities of the

minimum sets of forbidden induced subgraphs grow quickly.

On the other hand, the class {G : c2(G) ≤ k} is not closed under taking sub-

graphs which are not induced (consider, for instance, any n-vertex graph which is not

complete as a subgraph of Kn). Further, unlike its partition and cover counterparts,

c2(G) is not additive over disjoint unions.

Let W5 denote the wheel graph on five vertices, consisting of a cycle C4 and a

dominating vertex. Figure 2.2a in Section 2.2 depicts an odd cover of W5 with three

cliques (which is the minimum, see Theorem 2.23), and every vertex of W5 occurs in

two of them. Adding two new vertices to each of the three cliques, we obtain an odd

cover of W5 + K2, and thus c2(W5) = c2(W5 + K2) < c2(W5) + c2(K2). This is the

smallest example of the lack of additivity of c2 over disjoint unions.

We now state a few preliminary upper bounds on c2(G). The first, in terms of the
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order of G, follows from known algebraic results (see Theorem 2.7), but we include a

combinatorial proof here as well, noted by Rombach in a comment on Vatter’s original

MathOverflow post.

Theorem 2.2 ([85]). For any graph G of order n, c2(G) ≤ n − 1.

Proof. Let G be a graph with vertex set V = {v1, . . . , vn}. We start with a clique H1

on N [v1] and define H2, . . . , Hn−1 iteratively, letting Gi denote the graph for which

{H1, . . . , Hi} is a K-odd cover. For each i ∈ {2, . . . , n − 1}, let Hi be a clique on

{vi} ∪ {w ∈ V : viw ∈ E(G) △ E(Gi−1)}. It is easy to check that, for every i and

j ≤ i, NGi
(vj) = NG(vj) (indeed, every Hi contains only vertices from {vi, . . . , vn}).

Since every vertex in {v1, . . . , vn−1} has its correct neighborhood in Gn−1, so does vn,

and thus Gn−1 = G, as desired.

Theorem 2.2, in comparison with the Erdős-Goodman-Pósa theorem from Sec-

tion 1.2, marks a major distinction between c2(G) and cp(G): while the former is at

most linear in n, the latter can be quadratic, as evidenced by K⌊n/2⌋,⌈n/2⌉. The upper

bound in Theorem 2.2 is also sharp, and holds if and only if G = Pn [2] (see Theo-

rem 2.7). Speaking of the difference between cp and c2, we determine the maximum

value of cp(G)−c2(G) over all graphs G of order n to be ⌊n2/4⌋−3 in Corollary 2.24,

following from the fact that c2(K3,3) ≥ 3 (see Theorem 2.23) and Proposition 2.1.

Also in the vein of generalizing well-known results on clique partitions to the case

of odd covers, one might pose the natural analogue of the de Bruijn-Erdős theorem

of finding the minimum number of cliques of orders at most n − 1 which comprise a

K-odd cover of Kn. On a trip to Budapest in 2024, the following observation arose

in conversation between the author, Alexander Clifton, and Jiaxi Nie.
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Proposition 2.3. For any integer n at least 4, the cliques [n] − 1, [n] − 2, {1, 2},

and [n] − {1, 2} comprise a K-odd cover of the complete graph on vertex set [n].

Note that at least three cliques are necessary in a K-odd cover of Kn with cliques

of orders at most n − 1; otherwise, the odd cover would be a partition, which would

be impossible by the de Bruijn-Erdős theorem.

Proposition 2.4. No fewer than four cliques of orders at most n − 1 suffice to

comprise a K-odd cover of Kn when n ≥ 4.

Proof. By the observations above, it suffices to assume, for the sake of contradiction,

that k = 3. Since H1, H2, H3 do not comprise a partition of Kn by the de Bruijn-Erdős

theorem, there exists a pair of vertices u and v such that {u, v} ⊆ V (Hi) for every i.

Consider H1 and H2. Since H1 ̸= H2, we assume, without loss of generality, that there

is some vertex i ∈ H1 − H2. Let j be a vertex in Kn − H1. If H1 ⊃ H2, then, in order

that every edge jk is covered an odd number of times for k ∈ V (Kn) − j, we must

have H3 = Kn, a contradiction. Otherwise, we may assume j ∈ H2 −H1. In this case,

we must have ij ∈ E(H3), and we know that uv ∈ E(H3), so {i, j, u, v} ⊆ V (H3).

But now the edge iu is in both H1 and H3, but not H2, a contradiction.

We now provide a final general upper bound on c2(G) in terms of the vertex cover

number, τ(G).

Theorem 2.5 ([19]). For any graph G, c2(G) ≤ 2τ(G).

Proof. Let U = {u1, . . . , uτ } ⊂ V be a minimum vertex cover of G. We iteratively

construct a K-odd cover O with at most 2τ cliques. We start with cliques on N(u1)

and N [u1]; these build the edges incident to u1. Some of the edges incident to u1 may
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also be incident to u2. Thus, in order to obtain the remaining edges incident to u2,

we add cliques on N(u2) − u1 and N [u2] − u1 (if such a clique is empty or a singleton,

we need not use it). For each ui ∈ U , we add cliques on N [ui] − {u1, . . . , ui−1} and

N(ui) − {u1, . . . , ui−1} to O, thus obtaining the edges incident to ui which have not

already been constructed. Since every edge of G is incident to some vertex in U by

definition of a vertex cover, and since at most two sets were needed to obtain the

edges incident to each vertex in the cover, we have c2(G) ≤ 2τ(G).

Theorem 2.5 is sharp; for instance, a star has vertex cover number 1 and needs

two cliques in an odd cover (see Figure 2.1a). On the other hand, if any of the sets

N(ui) − {u1, . . . , ui−1}, i ∈ {1, . . . , τ}, in the proof of Theorem 2.5 are singletons (in

which case the clique on N [ui] − {u1, . . . , ui−1} is an edge), then c2(G) < 2τ(G). By

reordering, we see that the inequality is strict if there is a minimum vertex cover U

of G containing a vertex with only one neighbor outside of U . For instance, if we

subdivide one of the edges of K1,3, we obtain a graph K+
1,3 requiring two vertices in

any vertex cover, the degree-3 vertex v and one other. Note that this other vertex,

whichever one we choose, is incident to only one edge that isn’t incident to v, and

indeed, c2(K+
1,3) = 3 (see Figure 2.1b).

We will prove a third upper bound in terms of the size of G after noting an

algebraic interpretation of c2(G) in the following section.
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(a) An odd cover of K1,3 with two cliques

(b) An odd cover of K+
1,3 with three cliques

Figure 2.1: Graphs K1,3 and K+
1,3 exhibiting c2(G) = τ(G) and c2(G) < τ(G), respectively.

2.2 An algebraic interpretation and its

implications

Let F be a field, and let G be a graph. A set of vectors over F labeled by the

vertices of G is an orthogonal representation of G if nonadjacent vertices in G cor-

respond to orthogonal vectors. Such representations were introduced by Lovász in

1979 [71]; when F = R and the vectors are all of unit length, he called these or-

thonormal representations and used them to bound the Shannon capacity of G. An

orthogonal representation of G is called faithful if adjacent vertices in G correspond

to nonorthogonal vectors.

In 1989, Parsons and Pisanski introduced the more general notion of vector rep-

resentations [80]. To quote from their paper, “vector representations. . . are of interest

because they allow us to use linear algebra, the theory of bilinear forms, and geometry

to study properties of the graphs being represented, and because they allow us to use

these tools to construct interesting families of graphs.”
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Let G be a graph on vertex set [n], shorthand for the set {1, . . . , n}. Given a

nondegenerate bilinear form b : Fd × Fd → F and subsets S, A, B, and C of F, a

vector representation of G of dimension d (with respect to all of these parameters) is

a set of vectors v(1), . . . , v(n) ∈ Fd such that, for all i and j with 1 ≤ i < j ≤ n,

1. the components of each v(i) lie in S;

2. b(v(i), v(i)) ∈ A for all i ∈ [n];

3. if ij ∈ E(G), then b(v(i), v(j)) ∈ B; and

4. if ij /∈ E(G), then b(v(i), v(j)) ∈ C.

Note that orthogonal representations are those vector representations in which b(·, ·) is

the standard dot product and C = {0}. Generalizing the notion of faithful orthogonal

representations, we say that a vector representation is faithful is C = {0} and B∩C =

∅. Parsons and Pisanski were interested in the problem of finding the minimum

dimension d of a vector representation over R, where b(·, ·) is the standard dot product,

A is some subset of R+, B some subset of R−, and C = {0}. The problem of

minimizing the dimension of a faithful orthogonal representation over R was studied

by Lovász, Saks, and Schrijver in [72].

Alekseev and Lozin examined the minimum dimension d(G,F) of a vector repre-

sentation of G over F, under the standard dot product, with S = A = F, B = {1},

and C = {0} [2]. That is, d(G,F) is the minimum dimension of a faithful orthogo-

nal representation of G over F in which all pairs of nonorthogonal vectors have dot

product 1. Note that, when F = F2, this is simply the minimum dimension of a faith-

ful orthogonal representation. This problem is, in fact, equivalent to that of finding

c2(G), as we noted in [19].
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Proposition 2.6. For any graph G, the faithful orthogonal representations of G over

F2 are in one-to-one correspondence with the K-odd covers of G. In particular, we

have c2(G) = d(G,F2).

Proof. Let G be a graph. Given a collection of cliques {H1, . . . , Hd} on subsets of

V (G), define an incidence vector v ∈ Fd
2 for each vertex v of G by vi = 1 if v ∈ Hi,

and vi = 0 otherwise. Similarly, if {v : v ∈ V (G)} ⊆ Fd
2, we define a collection of

cliques H1, . . . , Hd by including v in Hi if and only if vi = 1. Note that u · v = 1 if

{u, v} ⊆ V (Hi) for an odd number of Hi, and u · v = 0 otherwise. It follows that

{v : v ∈ V (G)} is a faithful orthogonal representation of G over F2 if and only if

{H1, . . . , Hd} is a K-odd cover of G.

We now have the luxury of borrowing results on d(G,F) that apply to the case F =

F2. For instance, Alekseev and Lozin proved a stronger statement than Theorem 2.2.

Theorem 2.7 ([2]). Let G be a graph of order n, n > 2, which is not a path. For

any field F of characteristic 2, d(G,F) ≤ n − 2. Furthermore, d(Pn,F) = n − 1.

We can use this result to prove an upper bound on c2(G) in terms of the number

of edges in G.

Theorem 2.8 ([19]). For any graph G which is not a linear forest, c2(G) ≤ ∥G∥ − 1.

Proof. Suppose that a graph G which is not a linear forest has a vertex v of degree

d(v) > 2. The collection {N(v), N [v]} is a K-odd cover for the induced subgraph

G[N [v]]. The remaining m − d(v) edges of G may then be added one at a time to

obtain a K-odd cover for G of cardinality m − d(v) + 2 ≤ m − 1.
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Otherwise, G has maximum degree 2. Then G consists of disjoint cycles and paths.

Since G is not a linear forest by assumption, it must contain a cycle. Theorem 2.7

completes the proof.

We note that, if G is a linear forest, then c2(G) = ∥G∥. This will follow from

Theorem 2.17 in Section 2.3 on forests.

The equivalence between faithful orthogonal representations over F2 and K-odd

covers leads to a close relationship between c2(G) and an algebraic parameter known

as the minimum rank. A matrix is said to fit a graph G if its off-diagonal zeros match

those of A(G). Originally motivated by a discretization of the inverse Sturm-Liouville

problem for vibrations of a string [8], the inverse eigenvalue problem of a graph G is

to determine the sequences which can be the eigenvalues of a real symmetric matrix

which fits G. Towards some understanding of this problem, many researchers have

examined the problem of finding the maximum number of zeros which can be in such

a sequence, that is, finding the maximum nullity of a real symmetric matrix which

fits a given graph G. This, in turn, motivates a well-studied parameter known as the

zero forcing number of G, which provides an upper bound on the maximum nullity of

G. In the case of trees, the zero forcing number aligns with the maximum nullity, as

well as the minimum number of components in a linear forest containing every vertex

of the tree. As we will see in Theorem 2.17, this number is precisely |G|−c2(G) when

G is a forest.

Equivalent to the maximum nullity, one can study the minimum rank of a matrix

which fits G. We denote by mr(G,F) the minimum rank of a symmetric matrix

over F which fits G. It has been noted, for example, in [81], that the minimum

dimension of a faithful orthogonal representation of G over F is an upper bound on
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mr(G,F). Indeed, letting M be an n × d matrix whose rows are the vectors in a

faithful orthogonal representation of G, we see that MMT fits G, where MT denotes

the transpose of M . It is an easy exercise to show that the rank of MMT is bounded

above by the rank of M , from which the observation follows. By Proposition 2.6,

when the field in question is F2, such a matrix M is an incidence matrix for a K-odd

cover of G with d cliques.1 The following proposition was also noted in [19].

Proposition 2.9. For any graph G, c2(G) ≥ mr(G,F2).

There are graphs, such as Ka,b when a, b ≥ 3, for which c2(G) > mr(G,F2).

However, a result of Lempel from 1975 tells us these two parameters cannot be far

apart.2

Theorem 2.10 (Lempel’s lemma [68]). Let A be a symmetric matrix over F2 of rank

r. The minimum number of columns in a matrix M such that MMT = A is r + 1 if

Ai,i = 0 for all i, and otherwise is r.

Corollary 2.11 ([19, Corollary 12 and Theorem 13]). For any graph G, c2(G) ∈

{mr(G,F2), mr(G,F2) + 1}. Further, c2(G) = mr(G,F2) + 1 if and only if A(G) has

minimum rank over all matrices fitting G over F2 and is the unique such matrix.

Corollary 2.11 provides a characterization of the binary matrices of minimum rank

which fit graphs with c2(G) > mr(G,F2). We are also able to provide a combinatorial

perspective on the minimum K-odd covers of such graphs. In particular, we will show
1As an aside, the rows of M also provide incidence vectors for a collection of sets whose intersection

graph is G, an observation used by Erdős, Goodman, and Pósa in [41] along with their theorem on
cp(G) to prove that every graph is the intersection graph of a collection of sets with at most ⌊n2/4⌋
elements each.

2We were unaware of Lempel’s lemma when we wrote [19], in which we proved Corollary 2.11
using a result of Friedland [50].
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that they are the graphs possessing a minimum K-odd cover in which every vertex

occurs an even number of times. We require two lemmas to prove this.

Lemma 2.12 ([19]). Let G be a graph with vertex set V , and let O be a K-odd cover

of G. If, for some vertex v ∈ V , every u ∈ V − v occurs in an even number of cliques

in O, then the collection {H △ {v} : H ∈ O}, is also a K-odd cover of G.

Proof. Suppose that O is a K-odd cover of G such that every vertex in G, aside from

possibly one vertex v, occurs in an even number of cliques in O. Let Ov denote the

collection of symmetric differences of {v} with each clique in O; i.e., Ov = {H △{v} :

H ∈ O}. For any u ∈ V − v, if u and v occur together in an odd number of cliques

in O, then u is occurs without v in an odd number of cliques in O, so u and v occur

together an odd number of times in Ov. Similarly, if u and v occur together an even

number of times in O, then u occurs an even number of times without v in O, and

thus an even number of times with v in Ov. Also, any two vertices which are distinct

from v occur together the same number of times in Ov as in O. In other words, Ov

is also a K-odd cover for G, as desired.

In a particular case of Lemma 2.12, if every vertex of G occurs in an even number

of cliques in a K-odd cover O, then for any v ∈ V , the collection Ov is also a K-odd

cover for G. For example, Figure 2.2 depicts two K-odd covers of the wheel graph

W5, related by Lemma 2.12.

Lemma 2.13 ([19]). Let G be a graph with c2(G) even, and let O be a minimum

K-odd cover for G. Then there exists a vertex v ∈ V such that v occurs in O an odd

number of times.
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(a) A K-odd cover O of W5 with every vertex occurring in an even number of cliques

(b) The K-odd cover {K △ {v} : K ∈ O}, where v is the central vertex

Figure 2.2: An example of Lemma 2.12

Proof. Let G and O be as described. Suppose, for the sake of contradiction, that

every vertex of G occurs an even number of times in O. Let K be a clique in O on

{u1, . . . , us}. Then Ou1 is a minimum K-odd cover of G by Lemma 2.12. Furthermore,

Ou1 maintains the property that every vertex occurs an even number of times. We

can continue this process to find that Ou1,u2 = (Ou1)u2 also maintains that property,

and so on. Then Ou1,...,us is a minimum K-odd cover of G, but it contains an empty

clique (i.e., a clique on ∅). This contradicts the minimality of O.

If O is a K-odd cover of odd cardinality in which every vertex occurs an even

number of times, then the vertex v in Lemma 2.12 occurs an odd number of times

in the K-odd cover Ov. Together with Lemma 2.13, we see that, for any graph G,

there exists a minimum K-odd cover in which some vertex occurs an odd number of

times. We now show that this is the case for every minimum K-odd cover if and only

if c2(G) = mr(G,F2).

Theorem 2.14 ([19]). Let G be a graph with at least one edge. We have c2(G) >

mr(G,F2) if and only if G has a minimum K-odd cover in which every vertex of G

occurs an even number of times.

Proof. Let G be a graph with at least one edge, and let k = mr(G,F2) > 0. We
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begin by proving sufficiency. Suppose that there exists a minimum K-odd cover O

of G in which every vertex occurs an even number of times. Let M be the incidence

matrix for O. Each row of M contains an even number of 1’s, so the columns of M

are linearly dependent. Thus,

k ≤ rk(MMT) ≤ rk2(M) < c2(G).

Concerning the necessary condition, suppose that c2(G) ̸= k. Then c2(G) = k + 1

by Corollary 2.11. Further, the adjacency matrix A of G is the unique matrix which

fits G and has minimum rank over F2. By Lempel’s lemma, A = MMT for some

n × (k + 1) matrix M of rank k over F2. Since Ai,i = ∑
j M2

i,j = 0 for every i, every

row of M has an even number of 1’s. Thus, M is an incidence matrix for a K-odd

cover for G in which every vertex occurs an even number of times, as desired.

Note that we can slightly strengthen the converse of Theorem 2.14: if some min-

imum K-odd cover O of G contains an odd subcollection in which every vertex in

G occurs an even number of times, then the corresponding columns of the incidence

matrix M for O are dependent. Thus, in this case, mr(G,F2) ≤ rk2(M) < c2(G).

In analyzing which graphs have c2(G) = mr(G,F2) + 1, we are able to restrict our

attention to the class of connected graphs. We shall presently prove that, in order to

determine whether a graph has c2(G) = mr(G,F2), it suffices to determine whether

any of its components have this property.

Theorem 2.15 ([19]). A disconnected graph G has c2(G) > mr(G,F2) if and only if,

for every component G′ of G, c2(G′) > mr(G′,F2).

Proof. Let G = G1 + · · ·+Gt. If mr(G,F2) ̸= c2(G), by Corollary 2.11, the adjacency
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matrix A = A(G) is the unique matrix of minimum rank which fits G over F2.

Suppose, for the sake of contradiction, that there exists a component of G, say G1,

such that mr(G1,F2) = c2(G1). Notice that every matrix which fits G is a block-

diagonal matrix; let A = ⊕t
1Ai where Ai = A(Gi). Furthermore, the rank of a block-

diagonal matrix is minimized by minimizing the ranks of its blocks, so that rk2(Ai) =

mr(Gi,F2) for each i ∈ {1, . . . , t}. By Theorem 2.14, there exists a minimum K-odd

cover O for G1 in which some vertex occurs in an odd number of cliques. Let M =

M(O) be the matrix associated to O. Then MMT fits G1, is of rank mr(G1,F2), and

has some nonzero diagonal entry. We may thus replace Ak by MMT to obtain a matrix

fitting G of minimum rank over F2 with a nonzero diagonal entry, a contradiction.

On the other hand, if mr(Gi,F2) ̸= c2(Gi) for every i ∈ {1, . . . , t}, then, for each

i, the adjacency matrix Ai = A(Gi) is the unique matrix of minimum rank over F2

which fits Gi. Thus, there is a unique matrix fitting G over F2 of minimum rank, and

it is ⊕t
1Ai. By Corollary 2.11, we have c2(G) ̸= mr(G,F2), as desired.

Let us summarize our various characterizations of the graphs with c2(G) ̸= mr(G,F2).

Theorem 2.16 ([19]). For any graph G with at least one edge, the following are

equivalent:

1. c2(G) ̸= mr(G,F2);

2. c2(G) = mr(G,F2) + 1;

3. there is a unique matrix of minimum rank which fits G over F2, and it is A(G);

4. every vertex in G occurs in an even number of cliques in some minimum K-odd

cover of G;
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5. for every component G′ of G, c2(G′) = mr(G′,F2) + 1.

2.3 Forests

We now determine the value of c2(F ) for an arbitrary forest F . Not only does c2(F )

align with mr(F,F2), but it can be calculated using another combinatorial parameter

which we will presently describe.

Let p(F ) denote the minimum cardinality of a set of vertex-disjoint paths in F

which partition V (F ). Such a set of paths has been called a “path cover” in the

literature, but we refrain from using this terminology to avoid confusion with the

covering problems previously described. We prefer to think of p(F ) as the minimum

number of components in a spanning linear forest in F .

Theorem 2.17 ([19]). For any forest F of order n,

c2(F ) = mr(F,F2) = n − p(F ).

To prove Theorem 2.17, we require two lemmas which reduce the problem of

finding the minimum rank of a matrix (over an arbitrary field) which fits a forest F

to that of finding the value of p(F ), which admits a relatively simple algorithm.

In general, there is no straightforward relationship between the minimum rank of a

graph over differing fields. For example, the full house graph (depicted in Figure 2.4

of Section 2.4) has minimum rank 3 over F2, but minimum rank 2 over any other

field. On the other hand, the triclique K3,3,3 has minimum rank 2 over F2, but

mr(K3,3,3,R) = 3. Since mr(G,F) is additive over components, we can take disjoint

unions of such examples to obtain graphs G in which mr(G,F2) and mr(G,R) are
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arbitrarily far apart. For trees, however, the parameters mr(G,F2) and mr(G,R)

coincide.

Lemma 2.18 ([28]). The minimum rank of a forest is independent of the field.

Lemma 2.19 ([57]). For any tree T of order n, mr(T,R) = n − p(T ).

To prove Theorem 2.17, it now suffices to show that c2(T ) ≤ n − p(T ) for an arbi-

trary tree T of order n, since c2(G) ≥ mr(G,F2) by Corollary 2.11, and the minimum

rank function is additive over disjoint unions. We do so using an algorithm of Fallat

and Hogben [45] for finding a spanning linear forest of T with p(T ) components. The

algorithm can be briefly summarized as follows, and an example is depicted in Fig-

ure 2.3. If T is a spider (has at most one vertex of degree at least 3), take a maximal

path in T (which passes through the high-degree vertex if it exists) and all remaining

paths. Otherwise, T has a pendent spider: a spider subgraph S such that T − S is

disconnected. Take a maximal path P in S through this high-degree vertex (or take

P = S if S is itself a path). If T − P is disconnected, then take each of the resulting

path components as well (these are subgraphs of S). Repeat the process on T − S

until there are no more high-degree vertices left.

We use the resulting spanning linear forest of T , in addition to the technique used

to prove Theorem 2.5, to prove Theorem 2.17.

Proof of Theorem 2.17. By the additivity of the minimum rank function, we may

assume F is a tree T . By Corollary 2.11, it suffices to show that c2(T ) ≤ n − p(T ) =

mr(T,F2). Above, we described an algorithm from [45] for finding a spanning linear

forest of T with the minimum number of components, p(T ). (See Figure 2.3 for an

example.) In the linear forest L the algorithm outputs, every path contains at most

33



(a) A pendent spider S1 in a tree T is de-
picted with dashed edges

(b) A maximal path in S1, long with two
edges, form three disjoint paths. A pendent
spider in T −S1 is depicted with dotted edges.

(c) The tree T −(S1∪S2) is a spider, depicted
with bolded edges.

(d) A spanning linear forest of T with six
paths

Figure 2.3: Obtaining a minimum number of paths which partition the vertices of a forest
via an algorithm of Fallat and Hogben [45]
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one vertex of degree 3 or more in T , and these vertices are never endpoints of the

paths in which they lie. If L also covers all of the edges of T , then T is a path

and Theorem 2.7 completes the proof. Otherwise, any edges which are not in L are

incident to high-degree vertices, which are internal in their respective paths. Denote

these high-degree vertices by v1, v2, . . . , vk, and define U = {v ∈ V (T ) : dT (v) ≤ 2}.

Let O be the collection consisting of the ∥L∥ − 2k sets of the form {u, v} where

u, v ∈ U and uv ∈ E(L), along with the sets NT (vi) and NT [vi] for 1 ≤ i ≤ k. Then

O is a K-odd cover of T with cardinality ∥L∥. Note that ∥L∥ = n − p(T ). Therefore,

c2(T ) ≤ n − p(T ) = mr(T,F2), which completes the proof.

2.4 Forbidden induced subgraphs

As discussed in Proposition 2.1 of Section 2.1, the class of graphs G with c2(G) ≤ k is

hereditary for every nonnegative integer k. Recall that every hereditary graph class

can be defined by a collection of forbidden induced subgraphs. Here, we examine

these collections. We note that, aside from some terminology and notational changes,

much of this section is quoted directly from [19].

We saw in Proposition 2.9 that mr(G,F2) ≤ c2(G) for every graph G, and thus

{G : c2(G) ≤ k} ⊆ {G : mr(G,F2) ≤ k}. (2.1)

It is known that the class of graphs {G : mr(G,F) ≤ k} is hereditary and finitely

defined when F is a finite field [35]. For odd k, it follows from Corollary 2.11 that if

mr(G,F2) = k, then c2(G) = k, and if mr(G,F2) < k, then c2(G) ≤ k. Therefore,

when k is odd, we also have {G : c2(G) ≤ k} ⊇ {G : mr(G,F2) ≤ k}.
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Proposition 2.20 ([19]). For any odd k,

{G : c2(G) ≤ k} = {G : mr(G,F2) ≤ k}.

In particular, the classes {G : c2(G) ≤ k} and {G : mr(G,F2) ≤ k} for odd k

are defined by the same finite set of minimal forbidden induced subgraphs. The two

minimal forbidden induced subgraphs for k = 1 are evident, as a graph with c2(G) ≤ 1

consists of a single clique and/or isolated vertices. The class of graphs {G : c2(G) ≤ 1}

is then the class of {P3, 2K2}-free graphs. We obtain as a corollary to Proposition 2.20

that the set of minimal forbidden induced subgraphs for the property c2(G) ≤ 3 is

the same set given in the following theorem and listed explicitly in [9].

Theorem 2.21 ([9]). The class of graphs {G : mr(G,F2) ≤ 3} is defined by forbidding

a set of 62 minimal induced subgraphs, each of which has 8 or fewer vertices.

On the other hand, when k is even, it does not follow from Proposition 2.20 that

{G : c2(G) ≤ k} is finitely defined.

Theorem 2.22 ([19]). For any natural number k, the class of graphs {G : c2(G) ≤ k}

is defined by forbidding a finite set of induced subgraphs.

Proof ([19]). Let F be a minimal forbidden induced subgraph for the property c2(G) ≤

k. First, we claim that c2(F ) ≤ k + 2. Suppose, for the sake of contradiction, that

c2(F ) ≥ k + 3. Then, for any v ∈ V (F ) and K-odd cover O′ for F − v, we have that

O = O′ ∪ {N(v), N [v]} is a K-odd cover for F , which implies that c2(F − v) ≥ k + 1.

This contradicts the minimality of F .

Now, there exists a K-odd cover O for F of cardinality k + 2. We can associate

to F a vector of length s = 2k+2, where each entry corresponds to an element of
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the powerset 2O, such that each entry of the vector is a non-negative integer that

counts the number of vertices of F that are in a given subcollection of O. This vector

defines the graph F up to isomorphism. It is easy to verify that, if two graphs Fa

and Fb have vectors (a1, . . . , as) and (b1, . . . , bs) such that ai ≤ bi for 1 ≤ i ≤ s, then

Fa is an induced subgraph of Fb. We now see that the poset of forbidden induced

subgraphs for the property c2(G) ≤ k ordered by the induced subgraph relation can

be embedded in the poset Ns, which is the direct product of the poset N ordered by

≤. It is known that a direct product of finitely many posets that are well-founded

and that have no infinite anti-chains is itself well-founded and has no infinite anti-

chains [63]. Furthermore, any restriction of such a poset has the same properties.

This completes the proof to show that the poset of forbidden induced subgraphs for

the property c2(G) ≤ k, ordered by the induced subgraph relation, is well-founded

with a finite number of minimal elements.

Theorem 2.22 only guarantees that the set of minimal forbidden induced subgraphs

for the property c2(G) ≤ k is finite; it does not provide an explicit upper bound. Based

on the results concerning linear forests, we present the following conjecture.

Conjecture 2.1 ([19]). A minimal forbidden induced subgraph for the property c2(G) ≤

k has at most 2k + 2 vertices.

By analyzing the structure of graphs with c2(G) ≤ 2, we can find the set of minimal

forbidden induced subgraphs for this property. This is the set given in Theorem 2.23

and depicted by the set A in Figure 2.4.

Theorem 2.23 ([19]). The class of graphs {G : c2(G) ≤ 2} is the class of F-free

graphs, where F is the set A of graphs in Figure 2.4.
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A B

P4

P3 + K2

3K2

full house

dart ⋉

K3,3

W5

P3 ∨ P3

Figure 2.4: The sets of minimal forbidden induced subgraphs for the properties c2(G) ≤ 2
(A) and mr(G,F2) ≤ 2 (B).

Proof ([19]). Suppose, for the sake of contradiction, that there exists a graph G =

(V, E) such that c2(G) > 2, and G does not contain any element of F as an induced

subgraph. Furthermore, suppose that G is minimal with these qualities; that is, every

proper induced subgraph H of G has c2(G) ≤ 2. Then G has no isolated vertices.

Furthermore, |G| ≥ 5 by Theorem 2.7.

The rest of the proof is outlined as follows. We show that there exists a vertex x

for which c2(G−x) = 2. Letting O = {C1, C2} be a minimum K-odd cover for G−x,

depicted in Figure 2.5, we then show that C1 ∩C2 is nonempty, and that G−x has no

isolated vertices. Finally, we split into two cases: either one of the sets in O contains

the other, or not. Contradictions are derived by showing that either c2(G) ≤ 2 or G

contains an induced subgraph in F .

Firstly, we claim that there exists a vertex x for which c2(G − x) = 2. We have

c2(G − v) ≥ c2(G) − 2 ≥ 1 for all v ∈ V , since we can add N(v) and N [v] to any
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minimum K-odd cover for G − v to obtain one for G. Furthermore, if c2(G − v) = 1

for all v ∈ V , then mr(G − v,F2) = 1 for all v ∈ V , so G is a minimal forbidden

induced subgraph for the property mr(G,F2) ≤ 1. These are the graphs P3 and 2K2,

which both have K-odd covers of cardinality 2, which proves the claim.

Let O = {C1, C2} be a minimum K-odd cover for G−x. Notice that both |C1| ≥ 2

and |C2| ≥ 2. We begin by showing that C1 ∩ C2 is nonempty. Suppose C1 ∩ C2 = ∅.

The isolated vertices of G−x are a subset of NG(x). If every neighbor of x is isolated

in G − x, then G has an induced 3K2 or P3 + K2. Thus, x has a neighbor in at least

one of C1 and C2. Without loss of generality, say x has a neighbor in C1. Then x

dominates C1, otherwise G has an induced P3 + K2 (if x has no neighbor in C2), or

an induced P4 (otherwise). If x has no neighbor in C2, then either c2(G) ≤ 2, or G

has an induced P3 + K2. In fact, x dominates C2, otherwise G has an induced P4.

Then either c2(G) ≤ 2, or G has an induced ⋉, a contradiction. Therefore, C1 ∩ C2

is nonempty.

Suppose there exists an isolated vertex in G − x. Then, for each edge uv of G − x,

either both or neither of u and v are neighbors of x, otherwise G has an induced P4.

If there are at least two isolated vertices, then for each edge uv of G − x, exactly one

of u and v is a neighbor of x, otherwise G has an induced P3 + K2 or an induced ⋉.

We conclude there is exactly one isolated vertex in G − x. If x has no other neighbor,

then G has an induced P3 + K2, since C1 and C2 are not disjoint. Without loss of

generality, say x has a neighbor in C1. In fact, we can conclude that x dominates C1,

otherwise G has an induced P4. Then x has a neighbor in C1 ∩ C2, so x dominates

C2 as well, and G has an induced dart. Therefore, G − x has no isolated vertices.

Figure 2.5 represents a minimum K-odd cover O = {C1, C2} of G − x. Without
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C1 ∩ C2

C1 − C2 C2 − C1

x

Figure 2.5: A K-odd cover of G − x

loss of generality, we assume that |C1| ≤ |C2|. One may imagine G − x as disjoint

cliques C1−C2 and C2−C1, and an independent dominating set C1∩C2. We now split

into cases: either C1 − C2 and C2 − C1 are both nonempty, or C1 ⊂ C2. The former

case is divided into subcases differentiating between the possible neighborhoods of x

in G.

Case 1 (C1 −C2 and C2 −C1 both nonempty). Throughout Case 1, vertices in C1 −C2

are be denoted by u = u0, u1, u2, . . ., vertices in C1 ∩ C2 by w = w0, w1, w2, . . ., and

vertices in C2 − C1 by z = z0, z1, z2, . . ..

Suppose N(x) ⊆ C1 − C2. Then G has an induced P4 on vertex set {x, u, w, z},

where u ∈ N(x), w ∈ C1 ∩ C2, and z ∈ C2 − C1. A similar contradiction is derived if

N(x) ⊆ C2 − C1.

Suppose N(x) ⊆ C1 ∩ C2, and let w = w0 ∈ N(x). If |C2 − C1| ≥ 2, say

z0, z1 ∈ C2 − C1, then G contains an induced ⋉ on vertex set {x, z0, z1, w, u}, where

u ∈ C1 − C2. Otherwise, since |C2| ≥ |C1| by assumption, |C1 − C2| = |C2 − C1| = 1.

Let C1 − C2 = {u}, and let C2 − C1 = {z}. Since |G| ≥ 5, we have |C1 ∩ C2| ≥ 2. If

x has a non-neighbor in C1 ∩ C2, say w1, then G has an induced P4 on {x, w0, u, w1}.
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Otherwise, N(x) = C1 ∩ C2. If C1 ∩ C2 = {w0, w1}, then there is a K-odd cover of G

of cardinality 2: {{x, w0, u, z}, {x, w1, u, z}}. Thus, there exist vertices w0, w1, w2 ∈

N(x) ∩ (C1 ∩ C2), and G has an induced K3,3 on {x, u, z, w0, w1, w2}.

Suppose x has neighbors u = u0 ∈ C1 −C2 and w = w0 ∈ C1 ∩C2, but no neighbor

in C2 − C1. Let z ∈ C2 − C1. If x has a non-neighbor u1 ∈ C1 − C2, then G has

an induced dart on {x, u, u1, w, z}, and if x has a non-neighbor w1 ∈ C1 ∩ C2, then

G has an induced P4 on {x, u, w1, z}. Thus, C1 − C2 ⊂ N(x), and C1 ∩ C2 ⊂ N(x).

Since G − x has no isolated vertices, we have N(x) = C1. But then G has a K-odd

cover of cardinality 2: {C1 ∪ {x}, C2}. Thus, we arrive at a contradiction when x has

neighbors in C1 − C2 and C1 ∩ C2 but not C2 − C1. By similar arguments, we derive

a contradiction if x has neighbors in C2 − C1 and C1 ∩ C2 but none in C1 − C2.

Finally, suppose x has neighbors u = u0 ∈ C1 − C2, w = w0 ∈ C1 ∩ C2, and

z = z0 ∈ C2 −C1. Since |G| ≥ 5 and |C1| ≤ |C2|, either |C1 ∩C2| ≥ 2 or |C2 −C1| ≥ 2.

Suppose |C2 − C1| ≥ 2. If x has a non-neighbor z1 ∈ C2 − C1, then G has an

induced P4 on {u, x, z0, z1}. Otherwise, x dominates C2 − C1, and G has an induced

full house on {u, x, w, z0, z1}. Thus, |C2 − C1| = |C1 − C2| = 1, and |C1 ∩ C2| ≥ 2.

If x has 2 or more neighbors in C1 ∩ C2, say w0, w1 ∈ N(x) ∩ C1 ∩ C2, then G

has an induced W5 on {x, u, w0, w1, z}. Thus, x has a non-neighbor w1 in C1 ∩ C2.

Suppose C1 ∩ C2 = {w0, w1}. Since C1 − C2 = {u} and C2 − C1 = {z}, the two

cliques on {x, u, w0, z} and {w1, u, z} comprise a K-odd cover of G. Now suppose

that |C1 ∩ C2| ≥ 3; say w0, w1, w2 ∈ C1 ∩ C2. We have seen that w0 is the only

neighbor of x in C1 ∩ C2. Thus, G contains an induced ⋉ on {x, u, w0, w1, w2}. We

conclude that x must not have neighbors in each of C1 − C2, C1 ∩ C2, and C2 − C1.

This is a contradiction, which concludes Case 1.
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Case 2 (C1 − C2 = ∅; that is, C1 ⊂ C2). Let u0, u1 ∈ C1 and z = z0 ∈ C2 − C1.

If N(x) ⊊ C1, say u0 ∈ N(x) and u1 ∈ C1 − N(x), and if z ∈ C2 − C1, then G

has an induced P4 on {x, u0, z, u1}. If N(x) = C1, then G has a K-odd cover of

cardinality 2: {C2, C1 ∪ {x}}. Thus, x has a neighbor z ∈ C2 − C1. If u0 ∈ N(x)

but u1, u2 ∈ C1 are not neighbors of x, then G has an induced ⋉ on {x, u0, u1, u2, z}.

If x has neighbors u0, u1 ∈ C1, and a non-neighbor u2 ∈ C1, then G has an induced

dart on {x, u0, u1, u2, z}. Thus, x dominates C1. If x also dominates C2, then G

has a K-odd cover of cardinality 2: {C1, C2 ∪ {x}}. Thus, x has a neighbor z0 and

a non-neighbor z1 in C2 − C1, and G has an induced W5 on {x, u0, u1, z0, z1}. This

completes the proof of Case 2 and the proof of the theorem.

As a corollary, we see that the forbidden induced subgraphs for the property

c2(G) ≤ 2 themselves have c2(G) = 3.

Corollary 2.24. The maximum difference cp(G) − c2(G) over all graphs G of order

n is ⌊n2/4⌋ − 3.

Proof. The balanced biclique G = K⌊n/2⌋,⌈n/2⌉ has cp(G) − c2(G) = ⌊n2/4⌋ − 3.

The only graphs with c2(G) = 1 are cliques plus some isolates, but these also have

cp(G) = 1. If c2(G) = 2, then cp(G) < ⌊n2/4⌋, since no such graph contains K3,3 as

an induced subgraph, and the balanced biclique uniquely maximizes cp(G) in terms

of n. The result follows.

The graph K⌊n/2⌋,⌈n/2⌉ also provides a lower bound on the maximum value of the

ratio cp(G)/c2(G).
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Corollary 2.25. The maximum value of cp(G)/c2(G) over all graphs G of order n

is at least ⌊n2/12⌋.

We leave open the problem of determining upper bounds on cp(G)/c2(G).
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Chapter 3

Biclique and triclique odd covers

& a problem of Babai and Frankl

We now shift our attention from the class K of cliques to the class B of bicliques. We

recall Graham and Pollak’s celebrated result in algebraic graph theory, Theorem 1.3

of Section 1.2, that the complete graph Kn can be partitioned into no fewer than

n − 1 bicliques [54]. In their 1988 book, “Linear Algebra Methods in Combinatorics,”

Babai and Frankl posed the generalization of finding the minimum number of bicliques

required to cover every edge of Kn an odd number of times [6]. In our notation, this

is the value ϱ2(Kn, B). They posed as an exercise to show that ϱ2(Kn, B) ≥ ⌊n/2⌋

(which will follow from Proposition 3.6), remarking that the precise value is unknown.

It does not take long to find B-odd covers of Kn, n ≥ 5, with fewer than n−1 bicliques

(see Figure 1.2 in Section 1.2), and in fact we will see that ⌊n/2⌋ + 1 cliques always

suffice in Theorem 3.31. Radhakrishnan, Sen, and Vishwanathan determined that

ϱ2(Kn, B) = n/2 whenever n = 2(q2 + q + 1) for a prime power q ≡ 3 (mod 4),

or whenever there exists an n × n Hadamard matrix [83]. In Section 3.5, we make
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= △ △ △

Figure 3.1: A B-odd cover of K8 with four bicliques. Partite sets are depicted by black and
hollow vertices; gray vertices are not in either partite set.

significant progress on this problem, determining ϱ2(Kn, B) precisely when n is odd,

a multiple of 8 (see Figure 3.1), or equivalent to 18 (mod 24). First, we analyze the

more general problem of finding ϱ2(G, B), as many of the techniques we use for Kn

apply more generally.

The results presented in this chapter are due to two collaborations with a large

number of authors. In addition to the dissertation author, the former collabora-

tion [18] comprised Alexander Clifton, Eric Culver, Jiaxi Nie, Jason O’Neill, Puck Rom-

bach, and Mei Yin. The latter [17] comprised many of the same authors; the sym-

metric difference of the author sets is Jason O’Neill, Péter Frankl, and Kenta Ozeki.

In keeping with the notation that we used in these papers, we write b2(G) for the

parameter ϱ2(G, B).

We first began considering the parameter b2(G) as a variation of c2(G), before we

knew about Babai and Frankl’s problem. Our collaborator on the project discussed in

the previous chapter, Christopher Purcell, pointed us towards another MathOverflow

post, this time of Niel de Beaudrap [33], in which the problem of finding b2(G) was

posed. The dissertation author brought this problem to the 2021 Graduate Research

Workshop in Combinatorics, where we began our collaboration on [18].

There is a deep (algebraic) relationship between odd covers with bicliques and

odd covers with tricliques, as we will see in Section 3.3. To make our lives easier, we

allow our multipartite graphs to contain empty partite sets; in particular, bicliques
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also live in the class of tricliques. If a biclique has an empty partite set, then it has

no edges at all, but this notion will still prove convenient (for instance, in the proof

of Proposition 3.1). We denote a biclique with partite sets X and Y by (X, Y ) and

a triclique with partite sets X, Y , and Z by (X, Y, Z).

3.1 Preliminary results

We begin with a simple statement, analogous to Proposition 2.1.

Proposition 3.1. The class of graphs {G : b2(G) ≤ k} is hereditary.

Proof. We apply the same argument we used to prove the corresponding statement

for c2. Let {H1, . . . , Hϱ} be a minimum B-odd cover of G, and let U ⊆ V (G). Each

induced subgraph Hi[U ] for i ∈ {1, . . . , ϱ} is a biclique, and it is easy to check that

{H1[U ], . . . , Hϱ[U ]} is an odd cover of G[U ].

If G has twin vertices u and v, meaning that N(u) = N(v), then deleting v from

every biclique in which it occurs in a minimum B-odd cover of G, as in the proof of

Proposition 3.1, actually produces a minimum B-odd cover of G − v.

Proposition 3.2. If u and v are twin vertices in a graph G, then b2(G − u) =

b2(G − v) = b2(G).

Proof. That b2(G−u) and b2(G−v) are bounded above by b2(G) follows from Propo-

sition 3.1. On the other hand, given a minimum B-odd cover of G−v, let us add v to

every partite set containing u. The edge uv is in none of the resulting bicliques, and

the edge vw occurs in a biclique if and only if uw occurs. Thus, we have here a B-odd
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(a) An odd cover of C6 with two bicliques (b) An odd cover of 2K3 with three bicliques.

Figure 3.2: Minimum odd covers of C6 and 2K3

cover of G of cardinality b2(G−v), so b2(G) ≤ b2(G−v). Similarly, b2(G) ≤ b2(G−u),

which completes the proof.

For example, consider the square C4. The two pairs of nonadjacent vertices in

C4, {x1, x2} and {y1, y2}, are both twin pairs. Taking the B-odd cover {(x1, y1)} of

K2 and adding x2 to x1’s partite set and y2 to y1’s partite set, we obtain an odd

cover of C4 with one biclique; indeed, C4 = K2,2. Larger even cycles do not contain

twin vertices, so we cannot apply this trick, but they do all possess minimum B-odd

covers with copies of C4. We exhibit a construction of such an odd cover below (and

in Figure 3.2a), and later prove that it is optimal in Corollary 3.7.

Proposition 3.3. For any positive integer n, b2(C2n) ≤ n − 1.

Proof. Let V (C2n) = {x1, . . . , xn, y1, . . . , yn} and E(C2n) = {xixi+1, yiyi+1 : i ∈ [n −

1]} ∪ {x1y1, xnyn}. For each i ∈ [n − 1], define Xi = {xi, yi+1} and Yi = {xi+1, yi}.

Then {(Xi, Yi) : i ∈ [n−1]} is an odd cover of C2n with squares, as in Figure 3.2a.

It follows from Proposition 3.1 that, for any component G′ of a disconnected

graph G, b2(G′) ≤ b2(G). As in the case of K-odd covers (and all the other types

of odd covers we’ve encountered), however, the parameter b2 is not additive over the

components of G. For example, while it is clear that b2(K3) = 2, we have b2(2K3) ≤ 3,

as depicted in Figure 3.2b.
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The odd cover of 2K3 depicted in Figure 3.2b also generalizes, but in a less ob-

vious way than the one for C6. We will generalize the following result yet again in

Theorem 3.30 when we determine b2 for an arbitrary disjoint union of cycles.

Proposition 3.4 ([18]). For any positive integer t, b2(tK3) ≤ t + 1.

Proof. Let the vertex set of tK3 be {ui, vi, wi : i ∈ [t]}, where each {ui, vi, wi} is a

triangle. For each i ∈ [t], define Xi = {vi, wi} and Yi = {vj : j ̸= i} ∪ ui. Note

that {(X1, Y1), . . . , (Xt, Yt)} is an odd cover of the graph G with edges uivi and uiwi

for i ∈ [t] and viwj for {i, j} ∈
(

[t]
2

)
. Now, define Xt+1 = {vi : i ∈ {1, . . . , t}} and

Yt+1 = {wi : i ∈ {1, . . . , t}}. The edges in common between G and (Xt+1, Yt+1) are

the edges viwj for {i, j} ∈
(

[t]
2

)
, and the edges present in (Xt+1, Yt+1) which are not

in G are those of the form viwi for i ∈ [t]. Thus, G △ (Xt+1, Yt+1) = tK3, which

completes the proof.

We now construct odd covers of G + G, for any graph G of order n, using at most

n bicliques.

Theorem 3.5 ([17]). For any graph G of order n, b2(G + G) ≤ n.

Proof. Let {u1, . . . , un} and {v1, . . . , vn} be the vertex sets of two copies of G, denoted

Gu and Gv, where uiuj ∈ E(Gu) if and only if vivj ∈ E(Gv).

Claim. There exists a B-odd cover {(Xi, Yi) : i ∈ [n]} of Gu +Gv, where Xi = {ui, vi}

for every i.

We prove the claim by induction. The base case, n = 1, is trivial. Suppose n ≥ 2.

Let G′
u = Gu −un and G′

v = Gv −vn. By induction, there is a B-odd cover of G′
u +G′

v

with n − 1 bicliques satisfying the claim. Let {(X ′
i, Y ′

i ) : i ∈ [n − 1]} be such an odd
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cover. We extend this to an odd cover of Gu + Gv as follows: let Xi be as defined in

the claim for all i ∈ [n]. For each i ∈ [n − 1], we add un to Y ′
i if and only if uiun in

E(Gu). That is, Yi = Y ′
i ∪ un if uiun ∈ E(G), and Yi = Y ′

i otherwise. Clearly, the

bicliques (X1, Y1), . . . , (Xn−1, Yn−1) construct all of the edges in G′
u + G′

v, as well as

the edges uiun ∈ E(Gu). We have also constructed the “wrong” edges viun in place

of the edges vivn we want. Let Yn = {vi : vivn ∈ E(Gv)}. Note that (Xn, Yn) consists

of precisely these edges, as well as the missing edges vivn ∈ E(Gv). This proves the

claim, and thus proves the theorem.

We have now seen that the parameter b2(G) is not additive over disjoint unions.

Surprisingly, we can even find graphs G and H for which b2(G + H) = c2(G). We

posed the question in [17] of determining whether, for any graph H, one can find a

graph G such that b2(G) = b2(G + H). We answer the question in the affirmative for

H = K2 or H = K3. Figure 3.3 depicts a graph G+K2 where b2(G+K2) = b2(G) = 4.

We have checked computationally that b2(G) = 4, and an odd cover of G + K2 with

four bicliques (X1, Y1), . . . , (X4, Y4) is encoded in the words which label the vertices.

An ε in the ith entry of a word indicates that the vertex is not in the ith biclique,

a 0 indicates that the vertex is in Xi, and a 1 indicates that the vertex is in Yi. For

example, the words 000ε and 1000 which label the endpoints of the isolated edge xy

tell us that, say, x is in X1, X2, and X3, but not in (X4, Y4), and y is in Y1, X2, X3, and

X4. Similarly, Figure 3.4 depicts a graph G+K3 having b2(G+K3) = b2(G) = 5. We

have checked computationally that no graph G with b2(G) < 4 and b2(G+K2) = b2(G)

exists, and neither does there exist a graph with b2(G) < 5 and b2(G + K3) = b2(G).

Another interesting class of disjoint unions to consider would be those of the form

G + Ḡ, where Ḡ denotes the graph on V (G) with edge set
(

V (G)
2

)
− E(G). There is
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Figure 3.3: The 10-vertex component, G, on the left satisfies b2(G) = 4, and b2(G+K2) = 4.
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Figure 3.4: The 13-vertex component, G′, on the left satisfies b2(G′) = 5, and b2(G′ +K3) =
5.
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a large amount of literature on what are called Nordhaus-Gaddum type inequalities.

We pose one such question in [17]: is it always the case that, for a graph G of order

n, b2(Kn) ≤ b2(G + Ḡ) ≤ n? All the evidence we have at the moment suggests that

this might be the case.

Note that each of the upper bounds on b2(G) we have seen thus far are no larger

than |G|/2 + 1. In fact, we have yet to discover a graph G of order n for which

b2(G) > n/2 + 1. This is in sharp contrast to the minimum cardinality of a biclique

partition, which can be as large as n − 1 by the Graham-Pollak theorem. We would

be very interested to find a sharp upper bound on b2 in terms of n (or, indeed, any

upper bound in terms of n which does not hold for biclique partitions).

Problem 3.1 ([17]). Does there exist an ε > 0 such that, for all graphs G of suffi-

ciently large order n, b2(G) ≤ (1 − ε)n?

To prove upper bounds on the minimum cardinality of an odd cover, we find

constructions such as the ones given in Propositions 3.3 and 3.4. The lower bounds

we obtained for c2 were related to the algebraic parameter mr(G,F2). In the case of

b2, we also obtain an algebraic lower bound, thanks to a close relation to the rank

of the adjacency matrix of G over F2. We denote rk2(A(G)) simply by rk2(G), and

sometimes refer to rank over F2 simply as rank, when the context is clear.

It is a well-known (perhaps folklore) result that the rank of any symmetric matrix

over F2 with zero diagonal is even (see, for example, [59, p. 22]). That is, rk2(G) is

even for every graph G.

Proposition 3.6 ([18]). For any graph G, b2(G) ≥ rk2(G)/2.

Proof. Let {H1, . . . , Hϱ} be a minimum odd cover of G. To each Hi, we add isolated

vertices on V (G) − V (Hi) to obtain a graph H ′
i on V (G). As we saw in Section 1.3,
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Figure 3.5: A minimum B-odd cover of C8 using three K2,4s

letting Ai = A(Hi) for each i, we have ∑ϱ
1 Ai (mod 2) = A(G). By the subadditivity

of rank, and since the adjacency matrix of a nondegenerate biclique has rank 2, we

have rk2(G) ≥ ∑ϱ
i=1 rk2(Hi) ≥ 2ϱ = 2b2(G).

This simple bound provides the backbone for a large number of the values of

b2 we determine. For instance, rk2(C2n) = 2n − 2, and thus the construction in

Proposition 3.3 is optimal. Figure 3.5 depicts an odd cover of C8 with three copies of

K2,4, a very different construction than the one in Proposition 3.3.

Corollary 3.7 ([18]). For any positive integer n, b2(C2n) = n − 1.

In Section 3.2, we prove that not only C2n, but all bipartite graphs have b2(G) =

rk2(G)/2. We shall see that this is also the case for certain even cliques (see The-

orem 3.31). For a number of other graph classes, such as (disjoint unions of) odd

cliques (Theorem 3.32) or odd cycles (Theorem 3.30), the rank lower bound is off by

just one. In Section 3.3, we demonstrate some nice properties possessed by minimum

odd covers of graphs for which this bound is sharp. We call a B-odd cover of G a

perfect odd cover if its cardinality is exactly rk2(G)/2.

Before proceeding, we note a useful lemma concerning rk2(G). We have seen that

twin vertices in a graph G do not have any impact on b2(G). It is not hard to see that
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they do not impact rk2(G) either, for they correspond to identical rows in A(G). On

the other hand, adjacent twins are pairs u, v ∈ V (G) with N [u] = N [v] (as opposed

to N(u) = N(v)), and these may have a large impact on b2(G). The following lemma

shows that disjoint pairs of adjacent twins contribute highly to rk2(G).

Lemma 3.8 ([18]). Let G be a graph on n vertices. If G contains a matching M on

a set U of 2k vertices such that each edge uv ∈ M is a pair of adjacent twins, then

rk2(G) = 2k + rk2(G − U).

Proof [18]. It suffices to show that, by elementary operations, the adjacency matrix

of G can be turned into a block diagonal matrix whose blocks are an identity matrix

of size 2k and the adjacency matrix of G − U . Without loss of generality, we assume

the first two rows r1, r2 correspond to two vertices v1, v2 that form an edge in M . By

definition, r1 + r2 = (1, 1, 0, . . . , 0). The first two entries in each row other than r1

and r2 is either (1, 1) or (0, 0). So we can turn all entries in the first two columns,

except for the two diagonal entries, into 0 by elementary row operations. And then

we can turn all entries in the first two rows, except for the two diagonal entries, into

0 by elementary column operations. Similarly, assuming that the first 2k rows and

columns correspond to vertices in U , we can turn all entries in the first 2k rows or the

first 2k columns, except for the 2k diagonal entries, into 0 by elementary operations,

while the entries in the last (n − 2k) × (n − 2k) diagonal block remain the same. This

completes the proof.
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3.2 Bipartite graphs

In this section, we show that all bipartite graphs have perfect odd covers. First,

we examine forests. Recall that a vertex cover of G of cardinality τ gives rise to a

partition of E(G) into τ stars. Since each star is a biclique, and a partition is an odd

cover, the minimum cardinality τ(G) of a vertex cover of G provides an upper bound

on b2(G). This was noted in passing in [18].

Proposition 3.9. For any graph G, b2(G) ≤ τ(G).

It is perhaps surprising that this trivial upper bound is sharp for all forests.

However, an algebraic result of Mohammadian [75] makes the proof of this fact quick

and easy. Recall that the maximum cardinality of a matching in a tree T , m(T ), is

precisely τ(T ) due to the Kőnig-Egerváry theorem.

Lemma 3.10 ([75]). For any tree T , rk2(T ) = 2m(T ).

Proposition 3.11 ([18]). For any forest F , b2(F ) = rk2(F )/2 = τ(F ).

Proof. The second equality follows from Lemma 3.10 and the observation that the

adjacency matrix of a forest is the direct sum of the adjacency matrices of its tree

components. The first equality follows from Proposition 3.6 (the rank lower bound

on b2(F )) and Proposition 3.9.

Note that the maximum size of a matching in a path Pn is n/2 when n is odd,

and (n − 1)/2 when n is even.

Corollary 3.12 ([18]). Let n be a positive integer. If n is even, then b2(Pn) = n/2,

and if n is odd, then b2(Pn) = (n − 1)/2.
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The main result of this section generalizes Proposition 3.11 to arbitrary bipartite

graphs, not in terms of the vertex cover upper bound, but in terms of the rank lower

bound. Given a bipartite graph G with partite sets X and Y , we we say that a

biclique (Xi, Yi) (or a collection of bicliques) respects the bipartition of G if Xi ⊆ X

and Yi ⊆ Y .

Theorem 3.13 ([18]). Every bipartite graph has a perfect odd cover which respects

its bipartition.

To simplify the proof of Theorem 3.13, and as it may be of independent interest,

we begin with a lemma. Note that, for any graph G with rk2(G) < |G|, there exists

a vertex v such that rk2(G − v) = rk2(G). That is, we can remove a row and column

from A(G) without reducing the rank. In this case, the row in A(G) corresponding to

v is the sum of some subset of other rows, corresponding to a subset S of V (G) − v.

This is equivalent to having N(v) be the symmetric difference of the neighborhoods

of the vertices in S, or to having the symmetric difference of the neighborhoods of

the vertices in S ∪ v be empty. This is true if and only if every vertex in G has an

even number of neighbors in S ∪ v. In other words, the sets of rows (or columns)

in A(G) which sum to the zero vector are in natural bijection with the subsets U of

V (G) such that N(w) ∩ U is even for every w ∈ V (G). We call such a subset U an

even core if it is nonempty.

Lemma 3.14 ([18]). Let G be a graph with an even core U , and let u ∈ U . If

G − u has a minimum B-odd cover O such that, for all (X, Y ) ∈ O, at least one of

X ∩ (U − u) or Y ∩ (U − u) is even, then O can be extended to a B-odd cover of G

of the same cardinality. Hence, b2(G) = b2(G − u).
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Proof. Suppose that G − u has an odd cover O as described. For each biclique

(X, Y ) ∈ O, we define a biclique (X ′, Y ′) by

X ′ =


X : |X ∩ (U − u)| even;

X ∪ u : otherwise,
and Y ′ =


Y : |Y ∩ (U − u)| even;

Y ∪ u : otherwise.

The bicliques (X ′, Y ′) are well-defined, since no biclique (X, Y ) has odd-odd inter-

section with U − u.

Let O′ = {(X ′, Y ′) : (X, Y ) ∈ O}. We claim that O′ is an odd cover of G. Let

v ∈ V (G) − u. Clearly, for any vertex w ∈ V (G) − {u, v}, v and w are joined by

an edge in the same number of bicliques in O as in O′. As far as the parity which

with uv occurs in O′, we claim that uv occurs an odd number of times if and only if

|N(v) ∩ (U − u)| is odd. Indeed, uv ∈ (X ′, Y ′) if and only if v ∈ X and |Y ∩ (U − u)|

is odd, or v ∈ Y and |X ∩ (U − u)| is odd. Thus, the number of bicliques (X ′, Y ′)

containing uv is odd if and only if v has an odd number of neighbors in U − u. Note

that, since U is an even core, uv ∈ E(G) if and only if v has an odd number of

neighbors in U − u, completing the proof.

We are now ready to prove Theorem 3.13.

Proof of Theorem 3.13 [18]. We proceed by induction on the order of G. The claim

is easily verified for graphs of order at most 2. Now, let G be a bipartite graph on

at least three vertices with bipartition (X, Y ). Note that, if rk2(G) = |G|, then for

every vertex u ∈ V (G), rk2(G − u) = rk2(G) − 2. By the inductive hypothesis, G − u

has an odd cover with rk2(G)/2 − 1 bicliques respecting (X, Y ). Adding a biclique

with partite sets {u} and N(u), we obtain perfect odd cover of G which respects the
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bipartition.

On the other hand, if rk2(G) < |G|, then G contains an even core U . Let u ∈ U ,

and without loss of generality, suppose u ∈ X. Note that rk2(G − u) = rk2(G), since

U is an even core, and that U ⊆ X, since N(u) ⊆ Y and N(u) is the symmetric

difference of the neighborhoods of the vertices in U − u. By induction, there is a

minimum odd cover O of G − u that respects (X, Y ). In particular, at least one

partite set of each biclique in O contains no vertex in U − u. Thus, we may apply

Lemma 3.14 to extend O to a minimum odd cover of G. This completes the proof.

3.3 Alternating vector representations

Recall the vector representations defined in Section 2.2. We consider here another

vector representation over F2, this one defined for vectors v, w ∈ F2k
2 by v1w2 +

v2w1 + · · · + v2k−1w2k + v2kw2k−1. A bilinear form b is symplectic if it is alternating

(b(v, v) = 0 for all vectors v) and nondegenerate (b(v, w) = 0 for all w only if v is the

zero vector). Up to isometry, there is a unique symplectic bilinear form over F2k
2 [88].

We thus refer to the bilinear form described above as “the” symplectic bilinear form.

Alternatively, we consider matrix factorizations of A(G) of the form

A(G) = M
(
⊕k

1

(
0 1
1 0

))
MT,

where ⊕ denotes a direct sum of matrices. In other words, ⊕k
1

(
0 1
1 0

)
is the 2k × 2k

matrix with 1’s on the upper and lower diagonal and 0’s elsewhere. Note that ⊕k
1

(
0 1
1 0

)
is the adjacency matrix for a perfect matching on 2k vertices. For ease of notation,

we denote this matrix by Ak .
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Let G be a graph of order n, and let O be a B-odd cover of G, O = {(Xi, Yi) :

i ∈ [k]}. For each i ∈ [k], let x(i) = (x(i)
v )v∈V (G) be the incidence vector for Xi. That

is, x(i)
v = 1 if v ∈ Xi and x(i)

v = 0 otherwise. Similarly, let y(i) denote the incidence

vector for Yi. We form an n×2k matrix MO whose columns are the incidence vectors:

MO =

x(1) y(1) · · · x(k) y(k)

 . (3.1)

Proposition 3.15 ([18, 19]). Let O be an odd cover of G, O = {(Xi, Yi) : i ∈ [k]}.

The rows of MO comprise a faithful vector representation of G over F2 defined by the

symplectic bilinear form on F2k
2 . That is,

MOAk MT
O = A(G).

Proof. Let u = (x(1)
u , y(1)

u , . . . , x(k)
u , y(k)

u ) and v = (x(1)
v , y(1)

v , . . . , x(k)
v , y(k)

v ) be (not

necessarily distinct) rows of MO, corresponding to the vertices u and v of G. Then

b(u, v) = ∑k
i=1(x(i)

u y(i)
v + y(i)

u x(i)
v ), where the sum is taken over F2. Note that the ith

summand is 1 if u and v are in differing partite sets of (Xi, Yi), and is 0 otherwise.

Thus, b(u, v) = 1 if the edge uv occurs in an odd number of bicliques in O, and

b(u, v) = 0 otherwise, as desired.

We note that Proposition 3.15 provides an alternate proof of the rank lower bound,

Proposition 3.6. As in Section 2.2, it is easy to show that rk(MAk MT) ≤ rk(M) for

any n × 2k matrix M . Letting O be a minimum B-odd cover of G, the matrix MO

has 2b2(G) columns, so 2b2(G) ≥ rk2(M) ≥ rk2(G).
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Not every graph has a perfect odd cover, and thus we cannot always find an inci-

dence matrix MO with 2b2(G) columns which factors A(G) in this manner. However,

the following theorem of Friedland tells us that some matrix M with rk2(G) columns

factors A(G), even if it does not correspond to a B-odd cover.

Theorem 3.16 ([50, p. 426-427]). For any n × n symmetric matrix A with zero

diagonal and rank 2r over a field of characteristic 2, there is an n × 2r matrix M

such that

A = MAr MT.

In particular, for any graph G of order n with rk2(G) = 2r, there is an n × 2r

matrix M such that A(G) = MAr MT. Suppose that b2(G) > rk2(G)/2. If this

matrix M is not an incidence matrix for a B-odd cover of G, then what is it?

Note that, if MO is an incidence matrix for an odd cover O of G with k bicliques,

then for every i ∈ [k] and for every v ∈ V (G), at least one of x(i)
v and y(i)

v is 0.

That is, no vertex can be contained in both partite sets of a biclique. It follows that

b2(G) > rk2(G)/2 = r if and only if, for every n × 2r matrix M (with entries denoted

as in (3.1)) such that MAr MT = A(G), at least one pair (x(i)
v , y(i)

v ) = (1, 1). We

interpret the case of (1, 1)-pairs combinatorially using T -odd covers.

Theorem 3.17 ([19]). For every graph G, ϱ2(G, T ) = rk2(G)/2.

Proof. Let G be a graph, |G| = n and rk2(G) = 2r. Let M be an n × 2r factor of

the adjacency matrix A of G, as in Theorem 3.16. As before, let the rows of M be

indexed by the vertices of G, and let the columns be denoted x(1), y(1), . . . , x(r), y(r).

59



We obtain a collection of r tricliques (Xi, Yi, Zi) from M by setting

Xi = {v ∈ V (G) : (x(i)
v , y(i)

v ) = (1, 0)},

Yi = {v ∈ V (G) : (x(i)
v , y(i)

v ) = (0, 1)}, and

Zi = {v ∈ V (G) : (x(i)
v , y(i)

v ) = (1, 1)}.

Note that Au,v = ∑r
i=1(x(i)

u y(i)
v + x(i)

v y(i)
u ), and the ith summand is 1 if and only if

(x(i)
u , y(i)

u ) ̸= (x(i)
v , y(i)

v ) and neither pair is (0, 0). Thus, we have that uv ∈ E(G)

if and only if uv occurs in an odd number of tricliques (Xi, Yi, Zi). In other words,

{(Xi, Yi, Zi) : i ∈ [r]} is a T -odd cover of G. Further, it has minimum cardinality over

all T -odd covers of G since rk(M) ≥ rk(A) whenever MA MT = A. This completes

the proof.

In other words, the matrices M such that MA MT = A(G) are in bijection with

the T -odd covers of G. Recall from Corollary 2.11 that ϱ2(G, K) > mr(G,F2) if and

only if A(G) uniquely minimizes the rank over all symmetric matrices which fit G

over F2.

Corollary 3.18 ([19]). For any graph G, mr(G,F2) ∈ {ϱ2(G, K), ϱ2(G, T )}.

Theorem 3.17 also allows for an algebraic upper bound on b2(G).

Corollary 3.19 ([18]). For any graph G, b2(G) ≤ rk2(G).

As opposed to the lower bound b2(G) ≥ rk2(G)/2, we do not know whether the

bound in Corollary 3.19 is sharp. However, we believe that it is. In Section 3.3.2, we

define a graph Tk for each positive integer k which maximizes b2 over all graphs G

with rk2(G) = 2k. For k ∈ {1, 2}, we have checked by computer that b2(Tk) = 2k.
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3.3.1 Bases and even cores

Here, we demonstrate what we previously called the “nice properties” possessed by

perfect odd covers. Recall that a set of vectors is said to be independent if no subset

sums to the zero vector. A basis is a maximally independent subset from a set of

vectors; it is a standard exercise to show that all bases from the same set of vectors

have the same cardinality. We have been using this fact all along, for the rank of a

matrix is the size of a basis for its row space or column space.

The properties in question follow from a bijection between the independent sets

of rows in M and the independent sets of rows in A(G) when M is an n × rk2(G)

matrix such that MA MT = A(G).

Theorem 3.20 ([17]). Let G be a graph of order n and rank 2r, and let M ∈ Fn×2r
2

be such that MAr MT = A(G), where Ar = ⊕r
1

(
0 1
1 0

)
. For any subset S of {1, . . . , n},

the set of rows in M indexed by S is independent if and only if the set of rows in

A(G) indexed by S is independent.

Proof. Let G and M be as described, and let A = A(G). For each vertex v ∈ V (G),

let m(v) denote the row of M indexed by v and a(v) the row of A indexed by v. First,

suppose that a subset {m(s) : s ∈ S} of rows of M sums to the zero vector 0. If s

denotes the 1 × n incidence vector for S, then sM = 0, and thus sA = 0. It follows

that {m(s) : s ∈ S} is independent whenever the set {a(s) : s ∈ S} of rows in A(G)

is independent.

On the other hand, suppose that {m(s) : s ∈ S} is independent. This set is

contained in a basis for the row space of M which induces a 2r×2r full-rank submatrix
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MB. After a reordering of the vertices of G and the rows of M , we can write

M =

 MB

RMB

 =

I

R

MB.

Letting B = MBAr MT
B , we have

A = MAr MT =

I

R

B
(

I RT

)
=

 B BRT

RB RBRT

 .

It follows that the first 2r rows in A, those corresponding to B, span the row space

of A, and these contain every a(s) for s ∈ S. Since rk2(G) = 2r, the proof is

complete.

Recall from Section 3.2 that a nonempty set of rows (or columns) in A(G), indexed

by a subset S of V (G), sum to 0 if and only if S is an even core; that is, every vertex

in G has an even number of neighbors in S. By virtue of Theorem 3.17, we obtain

the following corollary.

Corollary 3.21 ([17]). Let M be the incidence matrix for a minimum T -odd cover

of a graph G. A nonempty subset of V (G) is an even core in G if and only if the

corresponding rows in M sum to the zero vector.

In the case that M = MO for a perfect B-odd cover O of G, there is a combinatorial

interpretation of a set of rows in M which sum to 0: the corresponding subset S of

V (G) has even intersection with every partite set in O. From this, we obtain the

following corollary.
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Corollary 3.22 ([17]). If O is a perfect B-odd cover of a graph G, then the even

cores in G are precisely those nonempty subsets of V (G) which have even intersection

with both partite sets of every biclique in O. In particular, no subgraph of G induced

by an even core has an odd number of edges.

Proof. If W is an even core such that G[W ] has an odd number of edges, then any

B-odd cover of G must contain some biclique (X, Y ) where both |X ∩W |, |Y ∩W | are

odd. Thus, such an odd cover cannot be a perfect odd cover, so b2(G) ≥ rk2(G)
2 +1.

As an aside, it follows from Corollary 3.22 that, for any graph G with a perfect odd

cover O, the even cores of cardinality 3 are independent sets (in the graph-theoretic

sense). For, if W is an even core, and w ∈ W , then for any (X, Y ) ∈ O, at least one

of |X ∩ (W − w)| or |Y ∩ (W − w)| is even since each of |X ∩ W | and |Y ∩ W | is even

and X ∩ Y = ∅. Thus, no biclique in O builds an edge between any pair of vertices

in W .

We note one final relationship between perfect odd covers and linearly independent

sets of rows in A(G). Though we have not found a use for it yet, we believe it may

come in handy some day. Let A be a collection of subsets of a set V . A transversal

of A is a set of |A| elements from V , each one contained in a distinct set in A. We

now prove that the subsets of vertices which index bases for the row space of A(G)

are transversals for the partite sets in any perfect odd cover of G. Note that, when

rk2(G) = |G| and G has a perfect odd cover, this implies that each vertex of G can

be assigned as a representative to a distinct partite set in which it occurs.

Theorem 3.23 ([17]). Let G be a graph with rk2(G) = 2r and a perfect odd cover

{(Xi, Yi) : i ∈ [r]}. If a set of rows in A(G) is a basis for its row space, then the
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corresponding set of vertices in G is a transversal for the collection of partite sets

{X1, Y1, . . . , Xr, Yr}.

We present a proof using Hall’s marriage theorem [56], a celebrated result in the

study of set systems, which states that A has a transversal if and only if |S| ≤

| ∪S∈S | for every subcollection S of A. We note an alternate proof below it, using

Theorem 3.20, an analysis of the even cores in G △ (Xi, Yi) for any i ∈ [r], and using

the augmentation property of independent sets.

Proof [17]. Suppose that a set of rows in A(G), corresponding to a subset B of V (G),

is a basis for the row space of A(G). For 1 ≤ m ≤ 2r, any set of m vertices in B

collectively appears in at least m partite sets of the perfect odd cover. This is due

to the fact that if a vertex v is contained only within a subset of a fixed collection of

m − 1 partite sets, then the corresponding row of A(G) is spanned by the indicator

vectors of the m − 1 opposite partite sets, so these m independent row vectors would

lie in a dimension m − 1 subspace of Fn
2 , giving a contradiction. Thus, by Hall’s

marriage theorem [56], there is an ordering x1, y1, . . . , xr, yr of the vertices in B so

that xi ∈ Xi and yi ∈ Yi for all i ∈ {1, . . . , r}.

Alternate proof of Theorem 3.23. Let B ⊆ V (G) correspond to a basis of the row

space of A(G). By Theorem 3.20, the rows indexed by B in the incidence matrix

M for O form a basis for its row space. Let G′ = G △ (Xi, Yi), and let M ′ be the

submatrix of M corresponding to the perfect odd cover O − (Xi, Yi) of G′. Note that

there exist u, v ∈ B such that the set B′ of rows indexed by B −{u, v} in M ′ is a basis

for its row space. Now B′ ∪ u contains a unique even core I in G′; note that u ∈ I.

Similarly, there is a unique even core J in B′ ∪ v, and v ∈ J . Note that K = I△J is

also an even core in G′, u, v ∈ K, and these three even cores are all distinct.
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We now consider the sets I, J , and K in G. Each corresponds to an independent

set of rows in A(G), and the only possible sets SI , SJ , and SK of vertices w with an

odd number of neighbors in I, J , and K in G, respectively, are Xi, Yi, and Xi ∪ Yi.

We claim that {SI , SJ , SK} = {Xi, Yi, Xi ∪ Yi}. If, for a contradiction, we assume

SI = SJ , then that same set would have an even number of neighbors in I△J (since

the parity of N(v) ∩ (I − J) is the same as that of N(v) ∩ (J − I) for any v ∈ S).

Thus, K would be an even core in G, but K ⊆ B and B corresponds to a basis of

A(G), a contradiction. The same argument holds if we assume SK ∈ {SI , SJ}.

We now claim that there exist vertices x, y in B such that x ∈ Xi, y ∈ Yi, and

B − {x, y} is a basis for G′. If u ∈ Xi and v ∈ Yi, or vice-versa, then we are done.

Otherwise, without loss of generality, we assume that I is the even core in G′ such

that Yi is the set of vertices w with |NG(w) ∩ I| odd. Note that I must contain a

vertex x ∈ Xi, for otherwise NG′(w) ∩ I = NG(w) ∩ I for every w ∈ V (G). Note that

B′ −x∪u indexes a basis for the row space of A(G′) (this is a property of fundamental

circuits; we delete x from I and augment it to a new basis). Now, both J and K

contain v, and both contain a vertex from Yi since {SJ , SK} = {Xi, Xi ∪ Yi}. If, say,

y ∈ SJ ∩ Yi, we obtain another basis for the row space of A(G′), B′ − y ∪ v. Now we

use the basis exchange axiom: we can delete u from B′ − x ∪ u and replace it with

an element from B′ − y ∪ v to obtain a third set indexing a basis of A(G′), and this

set contains neither x nor y. Thus, we can delete x and y from G′ and proceed by

induction.
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(a) The graph T2 (b) The graph B2

Figure 3.6: The universal graphs T2 and B2

3.3.2 The universal graphs Bk and Tk

Recall Proposition 3.2, that if G is a graph with twin vertices u and v, then we can

obtain a B-odd cover of G from one of G − v by including v in every partite set in

which u occurs. Clearly, the same result holds for T -odd covers. In this section, we

define universal graphs for B- and T -odd covers, in the sense that they contain every

twin-free graph with ϱ2(G, B) ≤ k (resp. ϱ2(G, T ) ≤ k) as an induced subgraph.

Definition 3.1 (Bk, Tk). Let k be a positive integer, and let Mk denote the matrix

which has for rows all distinct vectors over F2k
2 . We define Tk to be the graph with

adjacency matrix

A(Tk) = MkAk MT
k .

Writing Mk as in (3.1), i.e., with columns x(1), y(1), . . . , x(k), y(k), we let Nk denote the

submatrix obtained by deleting all rows having at least one pair (x(i), y(i)) = (1, 1).

We define Bk to be the graph with adjacency matrix

A(Bk) = NkAk NT
k .
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In [53], Godsil and Royle also studied the graph Tk. Technically, they studied the

graph obtained from Tk by deleting the isolated vertex (associated to the zero vector

in Mk), but we find it simpler to leave it in. The graph Tk has many interesting

properties.

Proposition 3.24 ([53]). For any integer k, the graph Tk contains as an induced

subgraph every twin-free graph G with rk2(G) ≤ 2k.

Combined with Theorem 3.17, we see that Tk contains as an induced subgraph

every twin-free graph G with ϱ2(G, T ) ≤ k.

Corollary 3.25. Let k be a positive integer. For any graph G with rk2(G) ≤ 2k,

b2(G) ≤ b2(Tk).

This is in fact natural, as by definition Tk is obtained from a matrix Mk represent-

ing a T -odd cover. In a more combinatorial light, if we take k tricliques (Xi, Yi, Zi)

and ask for all possible combinations of tricliques that a vertex can be in (either in

Xi, Yi, or Zi, or not in any of them, for each i ∈ [k]), there are 4k such combinations,

associated to the 4k vertices of Tk. Similarly, Bk can be thought of as encoding all of

the different ways that a vertex might take part in a collection of k bicliques. For this

reason, we lay out T2 like a grid in Figure 3.6a, thinking of the rows as corresponding

to “in X1,” “in Y1,” “in Z1,” or “not in the triclique,” and similarly for the columns.

The main result of [53] was that Tk maximizes the chromatic number over all

graphs G with rk2(G) ≤ 2k, and that χ(Tk) = 2k + 1. We are interested in Tk for a

different reason: the value b2(Tk) is bounded asymptotically away from k, the rank

lower bound. This fact will follow simply from the following observation.
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Proposition 3.26 ([18]). For any integer k, the graph Bk contains as an induced

subgraph every twin-free graph G with b2(G) ≤ k.

Proof. Suppose that G is a twin-free graph with b2(G) ≤ k. Let O be a B-odd cover

of G with k (possibly degenerate) bicliques, and let MO be its incidence matrix, as in

Proposition 3.15. Note that no two rows of MO are identical, or else the corresponding

vertices in G would be twins, and that MO contains no (1, 1) pairs (x(i)
v , y(i)

v ). Thus,

MO is a submatrix of Nk. It is easy to check that the rows of a submatrix of Nk

correspond to the vertices in an induced subgraph of Bk, which completes the proof.

Theorem 3.27 ([18]). For any positive integer k, b2(Tk) ≥ log3 4 · k.

Proof. Recall that Tk is twin-free. If b2(Tk) = ℓ, then Tk is an induced subgraph of

Bℓ by Proposition 3.26. In particular, |Tk| = 4k ≤ 3ℓ = |Bℓ|. The desired result

follows.

We note that Theorem 3.27 can be used to find other graphs with b2(G) >

rk2(G)/2 + r for any integer r by taking the symmetric difference of Tk with a graph

on a subset of its vertices whose value of b2 is sufficiently small.

We note one final property of Tk, which has proved useful in ongoing work with

Clifton, Nie, and Rombach in improving the bound in Theorem 3.27.

Proposition 3.28. The sum of any linearly independent set of rows in A(Tk) contains

exactly 4k/2 ones.

Proof. Let Mk be the matrix whose rows are all distinct vectors from F2k
2 , labeled by

the vertices of Tk so that A(Tk) = MkAk MT
k . To fix some notation, write A(Tk) =
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(av,w), and let the vth row of M be denoted (x(1)
v , y(1)

v , . . . , x(k)
v , y(k)

v ). Note that

A(Tk)v,w = ∑k
i=1(x(i)

v y(i)
w + y(i)

v x(i)
w ).

It is not hard to show that every vertex in Tk, aside from the isolate, has degree

4k/2. Now, suppose that {a(u) : u ∈ U} is a linearly independent set of at least two

rows from A(Tk). Note that the corresponding set of rows in M , {m(u) : u ∈ U}, is

independent by Theorem 3.20. Thus, there exists some v /∈ U such that m(v) ̸= 0

and ∑
u∈U m(u) = m(v). That is, x(i)

v = ∑
u∈U x(i)

u and y(i)
v = ∑

u∈U y(i)
u for all

i ∈ {1, . . . , k}. Then, for any w ∈ {1, . . . , 4k},

A(Tk)v,w =
k∑

i=1
(x(i)

v y(i)
w + y(i)

v x(i)
w ) =

k∑
i=1

(
y(i)

w

∑
u∈U

x(i)
u + x(i)

w

∑
u∈U

y(i)
u

)

=
∑
u∈U

k∑
i=1

(x(i)
u y(i)

w + y(i)
u x(i)

w ).

Therefore, a(v) = ∑
u∈U a(u). We know that a(v), being nonzero, has 4k/2 ones, which

completes the proof.

Corollary 3.29. Any set of rows in A(Tk) sums either to the zero vector or to a

vector with exactly 4k/2 ones over F2.

3.4 Disjoint unions of cycles

In this short section, we use the relationship between even cores and perfect odd

covers (Corollary 3.22) to derive a lower bound on the value of b2(G), which is one

larger than rk2(G)/2, when G is a disjoint union of cycles. We also provide an upper

bound to match.
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Theorem 3.30 ([17]). If G is a disjoint union of k odd cycles C2n1+1, . . . , C2nk+1 and

ℓ even cycles C2m1 , . . . , C2mℓ
, then b2(G) = ∑

ni +∑
mi − ℓ + 1.

Proof. Note that rk2(C2m) = 2m−2 and rk2(C2n+1) = 2n. Thus, rk2(G)/2 = ∑k
1 ni +∑ℓ

1 mi − ℓ. We obtain an odd cover of C2m1 + · · · + C2mℓ
using ∑ℓ

1(mi − 1) bicliques

as in Proposition 3.3. If k = 0, then we have found a perfect odd cover, and we

are done. Otherwise, there is at least one odd cycle in the union. This odd cycle

is an even core with an odd number of edges, so Corollary 3.22 proves the lower

bound. For the upper bound, we note that an odd cycle C2n+1 with vertex set

{x1, . . . , xn, y1, . . . , yn, z} has an odd cover with n+1 bicliques: ({xi, yi+1}, {xi+1, yi})

for i ∈ [n − 1] (as in Proposition 3.3), ({xn, yn}, {z}), and ({xn}, {yn}). Note that

the last two bicliques form a triangle. In this manner, we can extend the odd cover of

kK3 with k +1 bicliques from Proposition 3.4 to an odd cover of C2n1+1 + · · ·+C2nk+1

using an extra ∑k
1(ni − 1) bicliques. Thus, b2(G) ≤ k + 1 + ∑k

1 ni − k + ∑ℓ
1 mℓ − ℓ,

which simplifies to the desired upper bound.

3.5 Babai and Frankl’s odd cover prob-

lem

Let us now turn our attention back to Babai and Frankl’s problem of determining

b2(Kn). We summarize our results in the following theorem.

Theorem 3.31 ([17, 18]). For any n ≥ 3, we have

⌈
n

2

⌉
≤ b2(Kn) ≤

⌊
n

2

⌋
+ 1.
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Further, whenever n ≡ 0 (mod 8) or n ≡ 18 (mod 24), Kn has a perfect odd cover.

We prove Theorem 3.31 in parts. That b2(K2n+1) = ⌈n/2⌉ will follow from

Theorem 3.32.1 That b2(K2n) ≥ n/2 will follow from Proposition 3.6, and that

b2(K2n) ≤ n/2 + 1 will follow from Theorem 3.34. The values of b2(K8n) and

b2(K24n+18) are proved in Theorems 3.35 and 3.36, respectively. Along the way, we

reveal some interesting properties of perfect odd covers of even cliques and generalize

our result for odd cliques to disjoint unions. Many of the proofs in this section are

quoted directly from the collaboration in which they appear (either [18] or [17]).

Theorem 3.32 ([17]). Let m1, . . . , mj be positive integers. We have

b2(K2m1+1 + · · · + K2mj+1) =
j∑

i=1
mi + 1

Proof [17]. We first demonstrate the lower bound. Since rk2(K2m1+1+· · ·+K2mj+1) =∑ 2mi, it suffices to show that no perfect odd cover exists. Suppose, for the sake of

contradiction, that B = (X, Y ) is a biclique in a perfect odd cover. For each K2mi+1,

there are ai vertices in X, bi vertices in Y , and ci vertices in Z = V (K2m1+1 + · · · +

K2mj+1) − (X ∪ Y ). Every K2mi+1 is an even core, and thus every ai and bi is even by

Corollary 3.22. For each clique, we pair up vertices that are in the same one of X, Y , or

Z to get ai/2 + bi/2 + ⌊ci/2⌋ pairs of adjacent twins in (K2m1+1 + · · · + K2mj+1) △ B.

Note that mi = ai/2 + bi/2 + ⌊ci/2⌋, so we have ∑mi pairs of adjacent twins in

(K2m1+1 + · · · + K2mj+1) △ B. By Proposition 3.8, the rank of this graph is 2∑mi,

which implies b2((K2m1+1 + · · · + K2mj+1) △ B) ≥ ∑
mi, a contradiction.

Now we will give a construction that provides a matching upper bound. Let
1Leader and Tan independently determined b2(K2n+1) in a parallel work [67]. Their construction

arose from an analysis of the corresponding odd cover problem for complete hypergraphs.
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ui, vi,1, . . . , vi,mi
, wi,1, . . . , wi,mi

be the vertices of the ith complete graph K2mi+1, 1 ≤

i ≤ j. By Theorem 3.5, there exist m1 + · · · + mj complete bipartite graphs B′
i,k with

parts (X ′
i,k, Y ′

i,k), 1 ≤ i ≤ j, 1 ≤ k ≤ mi, such that: (i) they form an odd cover of

2Km1 + · · · + 2Kmj
where one copy of Kmi

is induced on the vi,k’s and the other is

induced on the wi,k’s; and (ii) X ′
i,k = {vi,k, wi,k} for all 1 ≤ i ≤ j, 1 ≤ k ≤ mi.

Now we construct an odd cover of K2m1+1 + · · · + K2mj+1 as follows. For all

1 ≤ i ≤ j, 1 ≤ k ≤ mi, let Vi = {vi,1, . . . , vi,mi
}, Wi = {wi,1, . . . , wi,mi

},

Xi,k = X ′
i,k,

Yi,k = Y ′
i,k ∪ {ui} ∪

 ⋃
1≤t≤j, t̸=i

Vt

 .

Further, let
X0 = ∪1≤i≤jVi,

Y0 = ∪1≤i≤jWi.

Then it is not hard to check that the m1 + · · · + mj + 1 bicliques (X0, Y0), (Xi,k, Yi,k),

1 ≤ i ≤ j, 1 ≤ k ≤ mi, form an odd cover of K2m1+1 + · · · + K2mj+1. This shows that

b2(K2m1+1 + · · · + K2mj+1) ≤ m1 + · · · + mj + 1, which matches the lower bound.

Corollary 3.33 ([17]). For any odd integer n, n ≥ 3, b2(Kn) = ⌈n/2⌉.

Let us now consider b2(Kn) for even n. We will first show that, if an even clique

does not have a perfect B-odd cover (of cardinality n/2), then it requires at most one

extra biclique. We will then determine that Kn has a perfect odd cover for n meeting

certain divisibility conditions. What exactly the conditions on n are to guarantee a

perfect odd cover, however, remains an open problem. We make progress towards

this question in Theorem 3.38. We now proceed to prove an upper bound of n + 1
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on b2(K2n). Note that this is only one off from the rank lower bound of n from

Proposition 3.6.

Theorem 3.34 ([18]). Let G be a graph of order 2n. If G contains a perfect matching

M such that each edge uv ∈ M is a pair of adjacent twins, then rk2(G) = 2n and

b2(G) ≤ n + 1.

Proof. By Lemma 3.8, we have rk2(G) = 2n. We can show b2(G) ≤ n + 1 by con-

struction. Let M = {aibi}1≤i≤n. We prove the following two statements by induction:

(I) If n is odd, there exists a B-odd cover {(X1, Y1), . . . , (Xn+1, Yn+1)} of G such

that each pair ai, bi is joined by an edge in every biclique except (Xi, Yi), and

neither ai nor bi is in (Xi, Yi).

(II) If n is even, there exists a B-odd cover {(X1, Y1), . . . , (Xn+2, Yn+2)} of G such

that each pair ai, bi is joined by an edge in every biclique except (Xi, Yi), which

contains neither ai nor bi, and every ai is contained in Xn+2.

We note that the B-odd covers described above may contain degenerate bicliques,

with either one or both partite sets being empty, and thus are not necessarily optimal.

For the base case, let (X2, Y2) = ({a1}, {b1}). When n = 1, let X1 = Y1 = ∅; (I)

is satisfied. When n = 2, let (X1, Y1) = ({a2}, {b2}),

(X3, Y3) =


({a1, a2}, {b1, b2}) : a1a2 /∈ E(G),

({a1, b2}, {b1, a2}) : a1a2 ∈ E(G),

and (X4, Y4) = ({a1, a2}, {b1, b2}). One can check that (II) is satisfied.
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Case 1 (n = 2k + 1). First, we assume that n is an odd integer at least 3, and

that (II) holds for n − 1. Let O = {(X1, Y1), . . . , (X2k+2, Y2k+2)} be an odd cover of

G − {an, bn} meeting (II). We will show that (I) holds for G by adding an and bn to

opposite partite sets of every biclique in O except (Xn, Yn).

Consider the first 2k bicliques in O. Let O2k = {(X1, Y1), . . . , (X2k, Y2k)} and

OY
2k = {Y1, . . . , Y2k}. For each i ∈ [2k], we add a2k+1 to Yi if either (i) ai occurs an even

number of times in OY
2k and aia2k+1 ∈ E(G), or (ii) ai occurs an odd number of times

in OY
2k and aia2k+1 /∈ E(G). Otherwise, we add a2k+1 to Xi. Add b2k+1 to the opposite

partite in each case. Let O′
2k denote the resulting collection {(X ′

1, Y ′
1), . . . , (X ′

2k, Y ′
2k)}.

Suppose that a2k+1 occurs an even number of times in {Y ′
1 , . . . , Y ′

2k}. We claim

that all pairs aia2k+1 are correct in O′
2k; that is, aia2k+1 occurs in an odd number

of bicliques in O′
2k if and only if aia2k+1 ∈ E(G). This can be checked as follows.

Suppose a2k+1 ∈ Y ′
i and ai occurs an even number of times in OY

2k, as in case (i), so

aia2k+1 ∈ E(G). Since ai is not in Yi by assumption, it also occurs an even number of

times in OY
2k − Yi. If {ai, a2k+1} ∈ Y ′

t for an even (resp. odd) number of t ∈ [2k] − i,

then an even (resp. odd) number of these Y ′
t contain ai but not a2k+1, and an odd

(resp. even) number of these Y ′
t contain a2k+1 but not ai. Since both ai and a2k+1

occur in every biclique in O′
2k except (X ′

i, Y ′
i ), the edge aia2k+1 occurs in an odd

number of bicliques in O′
2k. In other words, the pair aia2k+1 is correct. By identical

reasoning, if a2k+1 ∈ Y ′
i and ai occurs an odd number of times in OY

2k (as in case (ii),

so that aia2k+1 /∈ E(G)), the edge aia2k+1 occurs in an even number of bicliques in

O′
2k. This proves the claim.

In the case described above, where a2k+1 occurs an even number of times in

{Y ′
1 , . . . , Y ′

2k}, we define X ′
2k+2 = X2k+2 ∪ a2k+1 and Y ′

2k+2 = Y2k+2 ∪ b2k+1. On
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the other hand, if a2k+1 occurs an odd number of times in {Y ′
1 , . . . , Y ′

2k}, a similar

argument to the one above shows that the pairs aia2k+1, i ∈ [2k], are all incorrect

in O′
2k. In this case, we define X ′

2k+2 = X2k+2 ∪ b2k+1 and Y ′
2k+2 = Y2k+2 ∪ a2k+1.

Since every ai ∈ X2k+2, i ∈ [2k], by the inductive hypothesis, all pairs aia2k+1 are

now correct in the resulting collection O′ = O′
2k ∪ {(X2k+1, Y2k+1), (X ′

2k+2, Y ′
2k+2)}.

By symmetry, all pairs bib2k+1 are also correct in O′. Note that the edge a2k+1b2k+1

occurs an odd number of times in O′, that aib2k+1 occurs an odd number of times

if and only if aia2k+1 occurs an odd number of times for i ∈ [2k], and similarly for

the pairs bia2k+1 and bib2k+1. Since the pairs ai, bi are all adjacent twins in G, (I) is

satisfied.

Case 2 (n = 2k + 2). Let O′ = {(X ′
i, Y ′

i ) : i ∈ [n]} be the odd cover of G − {an, bn}

obtained from G − {an−1, bn−1, an, bn} in the manner described in Case 1. We will

add an and bn to each biclique in O′ except (X ′
n, Y ′

n), as well as two new bicliques, to

obtain an odd cover of G which satisfies (II).

For each i ∈ [n − 1], we add an to Y ′
i if either ai occurs an even number of

times in {Y ′
1 , . . . , Y ′

n−1} and aian ∈ E(G), or if ai occurs an odd number of times in

{Y ′
1 , . . . , Y ′

n−1} and aian /∈ E(G). Otherwise, we add an to Y ′
i . Add bn to the opposite

partite set in any case. Let O′′ = {(X ′′
i , Y ′′

i ) : i ∈ [n]} denote the resulting collection

of bicliques.

Using similar reasoning as in Case 1, one can check that the pairs aian for i ∈ [n−1]

are all correct in O′′ if an occurs an even number of times in {Y ′′
i : i ∈ [n]}, or are

all incorrect otherwise. In the former case, we define Xn+1 = {ai : i ∈ [n]} and

Yn+1 = {bi : i ∈ [n]}. In the latter, we define Xn+1 = {ai : i ∈ [n − 1]} ∪ bn and

Yn+1 = {bi : i ∈ [n − 1]} ∪ an. Now, defining Xn+2 = {ai : i ∈ [n]} and Yn+2 = {bi :
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i ∈ [n]}, one can check that the collection O′′ ∪ {(Xn+1, Yn+1), (Xn+2, Yn+2)} meets

(II), completing the inductive step.

When n is odd, (I) provides us with an odd cover of G using n + 1 bicliques. This

implies b2(G) ≤ n + 1. On the other hand, when n is even, (II) only provides us

with an odd cover of G using n + 2 bicliques. However, we notice that the symmetric

difference (Xn+1, Yn+1) △ (Xn+2, Yn+2) is also a biclique; it is either degenerate, or

({an, bn}, {ai, bi : i ∈ [n − 1]}). Therefore, this also implies b2(G) ≤ n + 1.

We now show that, when n is a multiple of 8, Kn has a perfect odd cover. See

Figure 3.1 for an example of our construction. Although the phrasing of the proof

below differs from [18], the construction is the same.

Theorem 3.35 ([18]). If n is a multiple of 8, then b2(Kn) = n/2.

Proof. By Proposition 3.6, it suffices to prove the upper bound. Let V denote

the vertex set of Kn, V = {v1, . . . , v4k, w1, . . . , w4k}. We construct a B-odd cover

{(Xi, Yi) : i ∈ [4k]} as follows. For each i ∈ {1, . . . , 4k}, (Xi, Yi) contains every ver-

tex except vi and wi. We define only the sets Xi below, as Yi = V − (Xi ∪ {vi, wi}).

For each i divisible by 4, we let

Xi = {vj : j ≤ i − 1 or j = i + 1} ∪ {wj : j ≥ i + 2}.

For each i ≡ 1 (mod 4), we let

Xi = {vj : j ≤ i − 1} ∪ {wj : j ≥ i + 1}.
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For each i ≡ 2 (mod 4), we let

Xi = {vj : j ≤ i − 2} ∪ {wj : j = i − 1 or j ≥ i + 1}.

Finally, for each i ≡ 3 (mod 4), we let

Xi = {vj : j = i + 1 or j ≤ i − 2} ∪ {wj : j = i − 1 or j ≥ i + 2}.

It is clear to see that {v1, v2, v3, v4} is a clique. Further, for each j ∈ [4k], the edge

vjwj is in every biclique except (Xj, Yj), and thus occurs an odd number of times.

Secondly, for each j ∈ [4k − 4], the edges uvj and uvj+4 occur in the same number of

bicliques for each u ∈ V −{vj, vj+4}, and uwj and uwj+4 occur in the same number of

bicliques for each u ∈ V − {wj, wj+4}. It remains to show that the edges vjvj+4 and

wjwj+4 occur an odd number of times when j ∈ [4k − 4], as well as the edges vjwk

when j /∈ {k−4, k, k+4} or k /∈ {k−4, k, k+4}. By the symmetry of our construction,

for every vertex u ∈ V −{vi, wi}, the edge uvj occurs in the same number of bicliques

as uwj. In particular, uvj occurs in an odd number of (Xi, Yi) if and only if uwj also

occurs in an odd number of (Xi, Yi). This completes the proof.

We shall now prove that cliques of order 18 (mod 24) also have perfect odd covers.

We use a pairs construction, as defined by Radhakrishnan, Sen, and Vishwanathan

to determine perfect odd covers of Kn when n = 2(q2 + q + 1) and q ≡ 3 (mod 4) or

when there exists an n/2 × n/2 Hadamard matrix [83].

In a pairs construction for an even clique Kn, the vertices are partitioned into

ordered pairs (u, v) and, for each biclique (X, Y ), u ∈ X if and only if v ∈ Y and

v ∈ X if and only if u ∈ Y . The construction is described by an n/2 × n/2 matrix
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M with entries from {0, ±1}, where Mi,j = 0 if the ith pair (u, v) of vertices does

not occur in the jth biclique (Xj, Yj); Mi,j = 1 if u ∈ Xj and v ∈ Yj; and Mi,j = −1

if v ∈ Xj and u ∈ Yj. Rephrasing Lemma 1 of [83] slightly, we see that a pairs

construction yields a perfect odd cover of Kn if and only if every row of the matrix

M contains an odd number of nonzero entries and, for any pair of distinct rows of

M , the number of entries in which one row has a 1 and the other has a −1, as well

as the number of entries in which both are 1 or both are −1, is odd.

Theorem 3.36 ([17]). Let k be a nonnegative integer. If n = 24k+18, then b2(Kn) =

n/2.

Proof [17]. Note that n is divisible by 6. We construct M as a block matrix

M =


A C B

C B A

B A C



where each block is an (n/6) × (n/6) matrix, A consists entirely of 1’s, B consists

entirely of 0’s, and C is defined as follows:

cij =



0 : i = j,

1 : (j > i and j − i odd) or (j < i and j − i even),

−1 : (j > i and j − i even) or (j < i and j − i odd).

To verify that this construction yields a perfect odd cover, we note that each row

of M has n/6 ±1’s from A, and an additional n/6 − 1 from C, for a total of n/3 − 1,

which is odd. Now for each pair of distinct rows, we must verify that there are the
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correct number of entries where both are 1 or both are −1 and the correct number of

entries where one row has a 1 and the other a −1.

First consider rows i and j which are both in the first n/6 rows, both in the next

n/6 rows, or both in the last n/6 rows. Without loss of generality, we may assume

that i < j ≤ n/6. Then the total number of entries where both are 1 or both are −1

is n/6 (from the A block), plus the number of columns in C where rows i and j have

the same ±1 entry. The number of columns where they have different ±1 entries is

the number of columns in C where rows i and j have different ±1 entries. As n/6

is odd, it suffices to verify that two distinct rows of C have both an even number

of columns where they are the same ±1 entry and an odd number of columns where

they are different ±1 entries. Note that for two distinct rows of C, there are only

two columns where one row or the other has a zero. As there are an odd number,

n/6, of total columns, having an even number of columns where the two rows have

the same ±1 entry guarantees that there are also an odd number of columns where

the two rows have different ±1 entries. Thus it suffices to check that there are an

even number of columns such that rows i and j of C have the same ±1 entry. If j

and i have the same parity, this happens precisely for columns after column j and

those before column i, for a total of n/6 − (j − i + 1). Since n ≡ 18 (mod 24), this is

even. If instead j and i have opposite parity, then this happens precisely for columns

in between i and j for a total of j − i − 1, which is again even.

Otherwise, without loss of generality, we have that i is in the first n/6 rows and

j is in the next n/6 rows. For any column aside from the first n/6 columns, at least

one of these rows has a 0. For all the remaining columns, row i corresponds to an A

block, so its only relevant entries are 1’s. Thus it suffices to check that for row j −n/6
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of C that there are both an odd number of 1’s and an odd number of −1’s. Indeed,

any row of C has n/6−1
2 of each. Since n ≡ 18 (mod 24), this is odd, as desired.

We noted in [17] that the above construction, but replacing n ≡ 18 (mod 24) with

n ≡ 6 (mod 24), gives a perfect odd cover of 3Kn/3. That is, for any nonnegative

integer k, 3K8k+2 has a perfect odd cover. It is also worth noting that b2(2K2n1 + · · ·+

2K2nk
) = 2∑ni regardless of the values of the ni by Theorem 3.5 and Proposition 3.6.

We posed the following question regarding an odd number of copies of an even cliques.

Note that, if tK2n has a perfect odd cover for some odd t, then so does (t + i)K2n for

i ≥ 2, for if i is odd, then we are back in the case of an even number of copies of K2n,

and if i is even, we take a perfect odd cover of iK2n and a perfect odd cover of tK2n.

Question 3.1 ([17]). For every value of n, is there some odd t where tK2n has a

perfect odd cover?

We conclude with a few final notes on B-odd covers of even cliques. Firstly, we

included in [17] a proof of István Tomon that b2(K3k−1) = 3k−1
2 for any nonnegative

integer k. We also generalized this construction to find perfect odd covers of even

cliques which are distinctly different than those given in Theorems 3.35 and 3.36.

However, these cases are all handled by the theorems we have already proven, and

we do not include them here.

Let us now examine a few properties of perfect odd covers of even cliques which

may be useful for future research in the area. We begin with an implication of

Corollary 3.22.

Corollary 3.37 ([17]). Suppose that O is a perfect odd cover of an even clique. If I

is a nonempty subset of vertices in the clique, then at least one partite set of a biclique
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Xi

Yj

Yi

Xj

⋆ ⋆

⋆

⋆⋆⋆

⋆

⋆

Figure 3.7: A pair of bicliques (Xi, Yi), (Xj , Yj) in a perfect odd cover of an even clique (see
items (i) and (ii) of Theorem 3.38). A ⋆ denotes an odd number of vertices.

in O has odd intersection with I.

We now prove more specific properties possessed by perfect odd covers of even

cliques, supporting our belief that K2n does not have a perfect odd cover when n is 2

or 3 modulo 4. This is conjectured in [17]. It is noted that our construction for K8n

can also be phrased as a pairs construction, but that no pairs construction can exist

for K2n when n is 2 or 3 modulo 4 [17, Theorem 18].

Figure 3.7 illustrates some of the information contained in the first two parts of

the following theorem, our final result in this chapter.

Theorem 3.38 ([17]). Suppose that K2k has a perfect odd cover with bicliques {(Xi, Yi) :

i ∈ [k]}. The following conditions hold:

(i) If k is odd, then |Xi|, |Yi| ≡ 1 (mod 4) for all 1 ≤ i ≤ k. If k is even, then

|Xi|, |Yi| ≡ 3 (mod 4) for all 1 ≤ i ≤ k.

(ii) For all i, j ∈ {1, . . . , k} with i ̸= j, |Xi ∩ Xj|, |Xi ∩ Yj| and |Yi ∩ Yj| are all odd.

(iii) Let Ui = Xi ∪ Yi, 1 ≤ i ≤ k. Each vertex is contained in odd number of Ui’s.

(iv) For any integer s equivalent to 2 or 3 modulo 4, and for any set A ⊆ V (K2k) of

size s, there exists an i such that |A ∩ Xi| and |A ∩ Yi| are odd.
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Proof [17]. We prove items (i)–(iv) in order.

(i) We begin by proving that |Xi|, |Yi| are odd. For a given i, let Zi := V (K2k) −

(Xi ∪ Yi). Note that in the graph K2k △ Bi, any two vertices in the same one of

Xi, Yi, or Zi are adjacent twins. Thus, if |Xi|, |Yi| are both even, we can form a

perfect matching where each edge of the matching is between a pair of adjacent

twins. Thus by Lemma 3.8, rk2(K2k △ Bi) = 2k. Therefore, it takes at least a

further k bicliques to complete the odd cover of K2k and thus it will not be a

perfect odd cover. Suppose instead that one of |Xi|, |Yi| is odd and the other is

even. Without loss of generality, |Xi| is odd and thus, so is |Zi|. We can pair

up all but one vertex in Xi, all vertices in Yi, and all but one vertex in Zi to

form a matching M of k −1 edges where each edge is between a pair of adjacent

twins. By Lemma 3.8, rk2(K2k △ Bi) = 2(k − 1) + rk2(K2k △ Bi − V (M)). Note

that K2k △ Bi − V (M) has just two vertices, but as one is in Xi and the other

is in Zi, there is an edge between them. Thus rk2(K2k △ Bi − V (M)) = 2, and

rk2(K2k △ Bi) = 2k, meaning again it will take at least a further k bicliques to

complete the odd cover of K2k. The only remaining option for K2k to have a

perfect odd cover is if |Xi|, |Yi| odd for each biclique in the odd cover.

Now we determine |Xi|, |Yi| (mod 4). Consider the graph H := K2k △ (Xi, Yi).

Both the induced graphs H[Xi ∪Zi] and H[Yi ∪Zi] are complete graphs with an

odd number of vertices. Thus, any vertex of H has an even number of neighbors

in each of Xi ∪ Zi, Yi ∪ Zi, so Xi ∪ Zi, Yi ∪ Zi are both even cores of H. If either

|Xi ∪Zi| or |Yi ∪Zi| is 3 (mod 4), then the complete graph on that vertex set has

an odd number of edges, so by Corollary 3.22, we would then get that an odd

cover of H requires at least rk2(H)
2 +1 bicliques. Note that rk2(H) ≥ rk2(K2k)−2,
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so an odd cover of H would require at least rk2(K2k)/2 bicliques, meaning an odd

cover of K2k would require more than that. Therefore, both |Xi ∪ Zi|, |Yi ∪ Zi|,

which are odd, must be 1 (mod 4). If k odd, this yields |Xi|, |Yi| ≡ 1 (mod 4),

while if k even, this yields |Xi|, |Yi| ≡ 3 (mod 4).

(ii) For a given pair i ̸= j, vertices that are in both the same one of Xi, Yi, Zi

and the same one of Xj, Yj, Zj are adjacent twins. Suppose that not all of

|Xi ∩ Xj|, |Xi ∩ Yj|, |Yi ∩ Xj|, and |Yi ∩ Yj| are odd. Without loss of generality,

there are five ways for this to happen:

(I) All are even.

(II) All but |Yi ∩ Yj| are even.

(III) |Xi ∩ Xj|, |Xi ∩ Yj| are even and the other two are odd.

(IV) |Xi ∩ Xj|, |Yi ∩ Yj| are odd and the other two are even.

(V) All but |Yi ∩ Yj| are odd.

In each case, we will form a matching of adjacent twins and then apply Lemma 3.8

to determine rk2(K2k △ Bi △ Bj). In Case (I), we obtain a matching with k − 2

edges. The remaining vertices are in |Zi ∩ Xj|, |Zi ∩ Yj|, |Xi ∩ Zj|, |Yi ∩ Zj|, so

they constitute a C4, which has rank 2. Thus, we get rk2(K2k △ Bi △ Bj) =

2(k − 2) + 2 = 2k − 2, meaning at least k − 1 further bicliques are required to

complete the odd cover of K2k. In Case (II), we obtain a matching with k − 2

edges. The remaining vertices, which are in |Zi ∩Xj|, |Yi ∩Yj|, |Xi ∩Zj|, |Zi ∩Zj|

constitute a C3 with a pendant edge, which has rank 4. Thus, we get rk2(K2k △

Bi △ Bj) = 2(k − 2) + 4 = 2k, meaning at least k further bicliques are required

to complete the odd cover of K2k. In Case (III), we obtain a matching with k−2
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Figure 3.8: The graph obtained in Case (V) of the proof of Theorem 3.38 (ii) after removing
a maximum matching of adjacent twins from K2k △ Bi △ Bj [17].

edges. The remaining vertices, which are in |Yi ∩ Xj|, |Yi ∩ Yj|, |Yi ∩ Zj|, and

|Xi∩Zj| constitute a K1,2 with an isolated vertex, which has rank 2. Thus, we get

rk2(K2k△Bi△Bj) = 2(k−2)+2 = 2k−2, meaning at least k−1 further bicliques

are required to complete the odd cover of K2k. In Case (IV), we obtain a match-

ing with k − 1 edges. The remaining vertices are in |Xi ∩ Xj|, |Yi ∩ Yj|, so they

constitute a K2, which has rank 2, Thus, rk2(K2k △Bi △Bj) = 2(k−1)+2 = 2k,

meaning at least k further bicliques are required to complete the odd cover

of K2k. In Case (V), we obtain a matching with k − 3 edges. The remain-

ing vertices are in |Xi ∩ Xj|, |Xi ∩ Yj|, |Xi ∩ Zj|, |Yi ∩ Xj|, |Zi ∩ Xj|, |Zi ∩ Zj|,

which form a graph of rank 4, in particular, the complement of the graph con-

sisting of a path of length 4 and an isolated vertex; see Figure 3.8. Thus,

rk2(K2k △ Bi △ Bj) = 2(k − 3) + 4 = 2k − 2, meaning at least k − 1 further

bicliques are required to complete the odd cover of K2k. Thus, it is only possible

to form a perfect odd cover of K2k if |Xi ∩ Xj|, |Xi ∩ Yj|, |Yi ∩ Xj|, and |Yi ∩ Yj|

are all odd.

(iii) Each vertex has odd degree in K2k, so must be contained in an odd number of

edges across all bicliques. However, each vertex has odd degree in each biclique

in which it occurs, so it must appear in an odd number of bicliques.
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(iv) Note that the number of edges in A is
(

s
2

)
, which is an odd number. To cover

each edge in A odd number of times, we need odd number of edges. Hence there

exists a biclique Bi with odd number of edges in A. This is only possible when

|Xi ∩ A| and |Yi ∩ A| are both odd.
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Part II

Graph saturation problems
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Chapter 4

Introduction to graph saturation

Saturation problems concern the possible sizes of graphs which are maximal with

respect to a given property, in the sense that no edge can be added between nonad-

jacent vertices while retaining said property. Classically, the property in question is

to avoid some fixed forbidden subgraph. Such problems date back to the very begin-

nings of extremal graph theory, as we shall presently describe. We direct the reader

to Section 1.1 for definitions and notations which we refrain from redefining in this

part.

4.1 Extremal graph theory

Extremal combinatorics can be broadly described as the study of global parameters of

combinatorial objects subject to (typically local) constraints. In the aptly named field

of extremal graph theory, the combinatorial objects in question are graphs. Although

Paul Erdős attributed the initiation of the field to a 1941 paper of Paul Turán [39,89],

the study of Turán-type problems, as they are now known, dates at least to 1906 when
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Willem Mantel asked for the maximum number of edges in a graph on n vertices which

contains no triangle. The first published solution is due to Willem Wythoff in 1907,

who determined the answer to be ⌊n2/4⌋ [74].

The aforementioned 1941 paper of Turán concerns the more general problem of

avoiding p-cliques for any p ≥ 3. Note that a graph whose vertices can be partitioned

into p − 1 independent sets (a (p − 1)-partite graph) contains no p-clique by the

pigeonhole principle. Such a graph G is said to be (p−1)-chromatic, and the chromatic

number χ(G) is the smallest value χ for which G is χ-chromatic. To state Turán’s

theorem, we define the eponymous Turán graph T p(n) to be the complete p-partite

graph of order n whose partite sets are all of size ⌊n/p⌋ or ⌈n/p⌉. Note that T p(p) =

Kp; as a convention, we let T p(n) = Kn for n ≤ p. The graph T 4(9) is depicted in

Figure 4.1a. Note that ∥T p(n)∥ = (1 − 1
p
)n2

2 − s(p−s)
2p

.

Theorem 4.1 (Turán’s theorem [89]). Let n and p be positive integers, p ≥ 2. Over

all graphs of order n which do not contain a p-clique, T p−1(n) uniquely contains the

maximum number of edges.

In 1946, Erdős and Stone generalized Turán’s theorem, showing that any graph

of sufficiently large order n with asymptotically more edges than T p−1(n) contains a

copy of T p(n′), where n′ =
√

lnr−1(n) [44]. Then, in 1966, it was noted by Erdős and

Simonovits that the methods in the former paper generalize again to finding copies

of any graph in a sufficiently dense host graph.

Theorem 4.2 (Erdős-Stone-Simonovits theorem [43]). Any graph with asymptotically

more edges than T χ−1(n) contains every graph with chromatic number χ. That is, for

any ε > 0, there exists n0 such that, if G is a graph of order n ≥ n0 with at least

∥T χ−1(n)∥ + εn2 edges, then G contains every graph with chromatic number χ.
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This resolves the problem of finding what is now known as the extremal number,

or Turán number, ex(n, H) asymptotically. Given graphs G and H, we say that G is

H-free if it does not contain H as a subgraph. We always assume that H has at least

one edge, or else there are no H-free graphs on at least |H| vertices. The extremal

number ex(n, H) is the maximum number of edges in an H-free graph of order n. By

the Erdős-Stone-Simonovits theorem, for any graph H with chromatic number χ,

ex(n, H) =
(

1 − 1
χ − 1

)
n2

2 + o(n2).

As a note, when χ = 2, their theorem simply says that ex(n, H) = o(n2), and this case

remains (for the most part) wide open. The problem of determining the asymptotics

of ex(n, C2k), for example, is known only for k ∈ {2, 3, 5} [52] and is one of the most

famous open problems in the area.

Variations and generalizations of the extremal number abound in the literature,

from finding the maximum number of copies of a fixed graph other than K2 in an H-

free graph of order n [5,38,94], to a spectral version of the extremal number [77], to an

edge-colored version known as the rainbow Turán number [61] which will be relevant

in Section 6.3. Here, we are only grazing the surface of Turán-type problems, yet the

field of extremal graph theory has grown to include many other types of problems as

well. Included in these are a wealth of problems stemming from the famous Ramsey’s

theorem [84].
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4.2 Saturation problems

In 1949, Soviet mathematician A. A. Zykov [94] (perhaps unknowingly) reproved

Turán’s theorem, along with a notable generalization, using a method now known

as Zykov symmetrization. In doing so, he considered not only graphs which have

the maximum number of edges while avoiding a p-clique, but all of the graphs whose

edge sets are maximal with respect to avoiding a p-clique. Zykov called these graphs

p-saturated.

In 1964, Erdős, Hajnal, and Moon studied the problem of minimizing the number

of edges in a graph of order n to which the addition of any edge increases the number

of p-cliques. We call such a graph p-semisaturated.1 Note that a p-semisaturated

graph which does not contain a p-clique is p-saturated. They determined that the

minimum size of a p-semisaturated graph of order n is attained by a unique graph,

consisting of a single (p−2)-clique joined to an independent set of size n−p+2. This

is the complete (p−1)-partite graph whose partite sets are as unbalanced as possible,

as opposed to the balanced complete (p−1)-partite graph, T p−1(n). Figure 4.1 depicts

both graphs for p = 4 and n = 9.

Theorem 4.3 ([42]). The number of edges in a p-(semi)saturated graph of order n

is minimized by a unique graph with (p − 2)(n − p + 2) +
(

p−2
2

)
edges.

Both p-saturation and p-semisaturation were quickly generalized to other forbid-

den graphs, in the vein of the function ex(n, H), as well as to host graphs other

than Kn. As an instance of the latter, the problem of finding the minimum size a

subgraph of Ka,b which is edge-maximal with respect to not containing Ks,t has been
1Such graphs have also been called strongly p-saturated, e.g., in [13].
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(a) The Turán graph T 4(9) (b) The graph in Theorem 4.3

Figure 4.1: The graphs of maximum and minimum size over all K5-saturated graphs on
nine vertices.

studied [12, 93]). We focus on the former generalization. Let H be a graph with at

least one edge. A graph G is said to be H-semisaturated if the addition of any edge

to G increases the number of copies of H (i.e., the number of subgraphs isomorphic

to H). If G is both H-free and H-semisaturated, we say that G is H-saturated.

Equivalently, G is H-saturated if it is maximally H-free. We denote by ssat(n, H)

the minimum number of edges in an H-semisaturated graph of order n, called the

semisaturation number of H. Similarly, sat(n, H) denotes the minimum number of

edges in an H-saturated graph, the saturation number of H.

The graph saturation has received considerable attention over the years. We direct

the reader to [32] for a survey. In 1972, Ollmann determined the saturation numbers of

squares C4; sat(n, C4) = ⌊(3n − 5)/2⌋ [78]. Bollobás asked about saturation numbers

of larger cycles in [13], but these are still not known in general. In fact, it was

not until 2009 that sat(n, C5) was determined to be 10n/7 + O(1) [26] (and then

determined more precisely in 2011 [27]), and only in 2021 was sat(n, C6) determined

to be 4n/3 + O(1) [64]. For larger cycles Ck, k ≥ 7, Füredi and Kim showed that(
1 + 1

k+2

)
n − 1 < sat(n, Ck) <

(
1 + 1

k−4

)
n +

(
k−4

2

)
for n ≥ 2k − 5 [51]. The

91



authors also studied semisaturation numbers of cycles, showing that
(
1+ 1

2k−2

)
n−2 <

ssat(n, Ck) <
(
1 + 1

2k−10

)
n + k − 1 for n ≥ k ≥ 6. Thus, for k > 12, ssat(n, Ck) is

asymptotically smaller than sat(n, Ck). They also showed this to be the case for C5,

and noted that they believed it likely to be true for k ∈ {6, . . . , 12} as well. We will

see that a similar result holds for paths in Chapter 6, due to a result of Burr [21].

In a 1986 paper [60], Kászonyi and Tuza laid much of the ground work for the

study of saturation numbers. Indeed, they proved a sharp upper bound which remains

(asymptotically) the best general upper bound today. In particular, they proved

sat(n, H) = O(n) for every graph H. This marks a major difference between sat(n, H)

and ex(n, H), for we recall that the extremal number is quadratic for all graphs which

are not bipartite by the Erdős-Stone-Simonovitz theorem. Saturation numbers can

also be constant. For instance, when H has an isolated edge (i.e., a pair of adjacent

degree-1 vertices), an n-vertex graph consisting of a clique of order |H| − 1 and

n − |H| + 1 isolated vertices is H-saturated. Thus, sat(n, H) ≤
(

|H|−1
2

)
for every n.

Kászonyi and Tuza also proved that such graphs H are the only graphs with constant

saturation numbers [60]. The analogous result holds for semisaturation numbers, and

thus to determine a saturation or semisaturation number asymptotically is to find an

appropriate constant w for which sat(n, H) = wn + o(n).

In fact, it is not known that such a constant w exists for every graph H. Sat-

uration (and semisaturation) numbers are volatile in comparison to their counter-

part, extremal numbers. While ex(n, H) is easily seen to be monotone with re-

spect to subgraphs (ex(n, H ′) ≤ ex(n, H) whenever H ′ ⊆ H) and with respect to n

(ex(n, H) ≤ ex(n + 1, H)), neither sat(n, H) nor ssat(n, H) possess either of these

properties. For instance, sat(2n − 1, P4) = n while sat(2n, P4) = n − 1 [60] (see
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(a) A P4-saturated graph on nine vertices of
minimum size

(b) A P4-saturated graph on ten vertices of
minimum size

Figure 4.2: Two P4-saturated graphs, on nine and ten vertices, respectively, illustrate a lack
of monotonicity of sat(n, H) with respect to n.

(a) K+
1,5 + K3 (b) An (K+

1,5 + K3)-saturated graph

Figure 4.3: We have sat(n, K+
1,5 + K3) = 5n/6 + O(1) [20] while sat(n, K+

1,5) = 6n/7 +
O(1) [47], illustrating a lack of monotonicity of sat(n, H) with respect to subgraph inclusion.

Figure 4.2). Despite this, it remains an open conjecture of Tuza that the saturation

number is at least close to being monotone with n; that is, that limn→∞ sat(n, H)/n

exists for every graph H [90].

With regards to subgraph inclusion, the saturation number can indeed vary asymp-

totically in either direction. For instance, it is noted in [47] that the tree of order

p with the largest saturation number is K1,p−1 (Kászonyi and Tuza also determined

sat(n, K1,p−1) = (p − 2)n/2 + O(1) in [60]), while the smallest saturation number of

a tree with order p is n − ⌊(n + p − 2)/p⌋, witnessed uniquely by the graph K+
1,p−2

obtained by subdividing a single edge of a star (see Figure 2.1b). Another example

of nonmonotonicity with respect to subgraph inclusion, this time by restricting to a

single connected component of a disconnected graph, is depicted in Figure 4.3.
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Chapter 5

A lower bound on the saturation

number and a strengthening for

triangle-free graphs

Here, we prove various lower bounds on the semisaturation number of an arbitrary

graph H using the degrees of endpoints of edges in H as well as the degrees of their

neighbors. We recall that, since every H-saturated graph is H-semisaturated, we

have ssat(n, H) ≤ sat(n, H), and thus these are also lower bounds on sat(n, H). The

theorems proved herein are the result of a collaboration with Puck Rombach [20].

Though it does not appear to have been directly stated in the literature before our

paper [20], a relatively trivial bound on semisaturation (Proposition 5.1) follows as an

easy corollary as the main result of [24]. We state it formally here, as the idea behind

it serves as the foundation for each of the subsequently described lower bounds.

Definition 5.1 (wt0, k0). Let H be a graph. For each edge uv in H, define wt0(uv) =

max {d(u), d(v)} − 1, and let k0 = minuv∈E(H) {wt0(uv)}.
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A graph is said to be d-regular if every vertex has degree d. We now show that

an H-semisaturated graph cannot have many fewer edges than a k0-regular graph.

Proposition 5.1. For any graph H and integer n ≥ |H|,

ssat(n, H) ≥ k0n/2 − (k0 + 1)2/8.

Proof. Let G be an H-semisaturated graph of order n. If G is complete, then ∥G∥ =

n(n − 1)/2 > k0n/2 since k0 ≤ |H| − 2 < n − 1. In this case, we are done, so we

assume G has a pair of nonadjacent vertices x and y. By definition, xy is contained

in a copy of H in G + xy, the graph obtained by adding the edge xy to G. Let uv be

the edge in H mapped to xy in one such copy. Since max {dH(u), dH(v)} ≥ k0 + 1, at

least one of x or y has degree at least k0 + 1 in G + xy, and thus has degree at least

k0 in G.

It follows that at least one out of any pair of nonadjacent vertices in G has degree

at least k0. In other words, the set of vertices with degree strictly less than k0 in G

form a clique A. Therefore, letting a = |A|,

∑
v∈V (G)

dG(v) ≥ (n − a)k0 + a(a − 1) = k0n + a2 − (k0 + 1)a

≥ k0n − (k0 + 1)2

4 .

The well-known “handshake lemma” states that, since every edge contributes 2 to

the degree sum of G, ∥G∥ = ∑
d(v)/2. Therefore, ∥G∥ ≥ k0n/2 − (k0 + 1)2/8, as

desired.

The average degree of a graph G of order n is ∑v∈V (G) dG(v)/n. We frequently use
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(a) The star K1,4 has k0 = 3 (b) A minimum K1,4-semisaturated graph

Figure 5.1: Evidence that the bound in Proposition 5.1 is sharp; the disjoint union of a
k0-regular graph and a clique of order (k0 + 1)/2 meets the bound.

the handshake lemma in this chapter and in Section 6.3, making statements along the

lines of “the average degree of an H-semisaturated graph cannot be much less than

X” to mean that ssat(n, H) ≥ Xn/2 − c for a constant c which does not depend on

n. We denote the average degree of G by d(G). As it will make our lives easier, we

conflate this notation for subsets S of V (G) as well; that is, d(S) = ∑
v∈S d(v)/|S|.

By convention, we let d(∅) = 0.

While Proposition 5.1 provides a relatively trivial general lower bound on ssat(n, H),

it is still sharp for some fundamental classes of graphs, like stars [60] (see Figure 5.1).

A nontrivial lower bound was proven by Cameron and Puleo in 2022 [24]. It com-

bines the idea behind Proposition 5.1, that the endpoints of an edge added to an

H-semisaturated graph G must have sufficiently large degree to play the role of an

edge in H, with the idea that, if those endpoints are contained in a triangle in a

resulting copy of H, then they must have neighbors in common.

More precisely, for each edge uv in H, let wt△(uv) = |N(u) ∩ N(v)|, that is, the

number of triangles in H containing uv. Although the following theorem is phrased

in terms of saturation numbers in [24], the argument generalizes to semisaturation

numbers.

Theorem 5.2 ([24]). Let H be a graph, and let w = minuv∈E(H) {wt0(uv) + wt△(uv)}.
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There is a constant c depending only on H such that, for any integer n ≥ |H|,

ssat(n, H) ≥ wn/2 − c.

Theorem 5.2 is asymptotically sharp for a number of graphs. Included in these

are threshold graphs, obtained from a single vertex by iteratively adding isolated or

dominating vertices, and disjoint unions of cliques [24]. Indeed, we note that every

edge in Kp has wt0 = wt△ = p − 2, and thus we recover the asymptotic lower bound

for Theorem 4.3. On the other hand, whenever H has an edge minimizing wt0 which

is not contained in any triangle, Cameron and Puleo’s bound reduces to the one in

Proposition 5.1.

In what follows, we address the question: how much larger than k0 must the

average degree of an H-semisaturated graph be when there exists an edge minimizing

wt0 which is not contained in any triangles? We first provide an answer in the form

of a general lower bound (Theorem 5.4) using the degrees of neighbors of a given edge

in H, in addition to the degrees of its endpoints. We then provide a stronger lower

bound (Theorem 5.8) for two different classes of graphs H, both containing the class

of triangle-free graphs. Section 5.1 is devoted to proving the general lower bound,

and Section 5.2 the strengthening.

5.1 A general lower bound

Our answer to the question “how much larger than k0 must the average degree of an

H-semisaturated graph be?” depends on the degrees of neighbors of edges uv in H.

By the neighborhood NH(uv) of an edge uv, we mean the set of neighbors of u or v
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other than u and v themselves; that is, N(uv) = (N(u) − v) ∪ (N(v) − u).

Definition 5.2 (wt1, k1). Let H be a graph. For each edge uv in H with a nonempty

neighborhood, define wt1(uv) = maxw∈N(uv) {d(w)}, and define wt1(uv) = 0 for any

isolated edges. Further, let k1 = minuv∈E(H) {wt1(uv)}.

Let G be an H-semisaturated graph. For an edge added to G to be contained in

a copy of H, not only must one of its endpoints have degree at least k0, but also one

of its endpoints must have a neighbor of degree k1 (the smallest possible degree of

a neighbor of an edge in H). It is possible, however, that all of the edges uv in H

having wt1(uv) = k1 also have wt0(uv) > k0. In this case, if both endpoints of the

edge added to G have degree k0, at least one of these endpoints must have a neighbor

of degree strictly larger than k1. To describe exactly what this larger degree should

be, and to determine how large of a degree the endpoints should have to ensure a

neighbor of degree strictly larger than k1, we introduce two more parameters.

Definition 5.3 (k′
0, k′

1). Let wt0, k0, wt1, and k1 be as in Definitions 5.1 and 5.2.

We define

k′
0 = min

uv∈E(H)
wt1(uv)=k1

{wt0(uv)} and k′
1 = min

uv∈E(H)
wt0(uv)=k0

{wt1(uv)}.

Note that k0 = k′
0 if and only if k1 = k′

1. Otherwise, k0 < k′
0 and k1 < k′

1. We can

now say more precisely which pairs of nonadjacent vertices in G need neighbors of

which degrees. The following proposition summarizes a number of observations made

in [20].

Proposition 5.3. For any pair of nonadjacent vertices x, y in an H-semisaturated
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graph G, we have max {d(x), d(y)} ≥ k0, and, for some z ∈ N(x) ∪ N(y),

d(z) ≥



k′
1 : max {d(x), d(y)} ≤ k0;

k1 + 1 : max {d(x), d(y)} < k′
0;

k1 : max {d(x), d(y)} ≥ k′
0.

Hence, the subsets of vertices x in G

• A = {x : d(x) < k0};

• B = {x : d(x) ≤ k0 and x has no neighbor of degree at least k′
1};

• C = {x : d(x) < k′
0 and x has no neighbor of degree strictly larger than k1};

and

• D = {x : x has no neighbor of degree at least k1}

are (not necessarily disjoint) cliques, of orders at most k0, k0 + 1, min {k′
0, k1 + 1},

and k1, respectively.

We will refer to the cliques A, B, C, and D above throughout this chapter.

Since each has size bounded by a parameter depending only on H, they contribute

negligibly to the average degree of an H-semisaturated graph of large order n. In

other words, an H-semisaturated graph G cannot have average degree much less than

a graph G′ with minimum degree k0 in which every degree-k0 vertex has a neighbor of

degree at least k′
1, every vertex of degree less than k′

0 has a neighbor of degree larger

than k1, and every vertex of degree at least k′
0 has a neighbor of degree at least k1.

The bulk of this section is devoted to finding the minimum average degree of such
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a graph G′. We also find specific graphs G′ which attain this minimum for each set

of possible relations between k0, k1, k′
0, and k′

1. These minimum sizes are reflected

in the following theorem, summarizing our general lower bounds on semisaturation

numbers.

Theorem 5.4 ([20]). Let H be a graph with at least one edge and no isolated edges.

There is a constant c depending on H such that, for any n ≥ |H|,

ssat(n, H) ≥
(

k0 + k′
1 − k0

k′
1 + 1

)
n

2 − c.

Further, if k1 > k0, then ssat(n, H) ≥
(
k0 + (k′

1 − k0)/k′
1

)
n/2 − c, and if k0 = k1 <

k′
1 < k′

0, then

ssat(n, H) ≥


(
k0 + k′

0−k0
k′

0+1

)
n
2 − c : k′

0 ≤ k′
1 + k′

0−k0
k0+1 ;(

k0 + k′
1−k0
k′

1

)
n
2 − c : otherwise.

We prove Theorem 5.4 in two parts. In Lemma 5.6, we deal with the cases which

do not involve k′
0, proving first two lower bounds. In Lemma 5.7, we handle the

remaining cases (those where k′
0 > k′

1), noting a transition between the constructions

which minimize the average degree at k′
0 = k′

1 + (k′
0 − k0)/(k0 + 1).

5.1.1 Let’s not worry about k′
0

We begin with a warm up. Rather than diving directly into semisaturation, we first

determine the minimum average degree of a graph in which every vertex of minimum

degree δ has a neighbor of degree at least k. Trivially, if k ≤ δ, this minimum is δ, so
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we suppose k > δ. We also determine the minimum average degree of such a graph

in which every vertex of degree k also has a neighbor of degree strictly larger than δ.

(See the discussion of the graph G′ preceding the statement of Theorem 5.4, replacing

δ with k0 and k with k′
1.)

Proposition 5.5 ([20]). Let δ and k be positive integers with δ < k. If G is a graph

with minimum degree δ in which every vertex of degree δ has a neighbor of degree at

least k, then d(G) ≥ δ + (k − δ)/(k + 1). If, in addition, every vertex in G of degree

at least k has a neighbor of degree strictly larger than δ, then d(G) ≥ δ + (k − δ)/k.

Proof. We partition the vertex set V of G as follows: let S = {v ∈ V : d(v) = δ},

M = {v ∈ V : δ < d(v) < k}, and L = {v ∈ V : d(v) ≥ k}. By assumption,

every vertex in S has a neighbor in L, so e(L, S) ≥ |S| = |L ∪ S| − |L|. Since

e(L, S) ≤ ∑
v∈L d(v) = d(L)|L|, we have |L ∪ S| ≤ (d(L) + 1)|L|. Let ℓ = d(L).

Combining the aforementioned inequalities yields

|L| ≥ 1
ℓ + 1 |L ∪ S| and |S| ≤ ℓ

ℓ + 1 |L ∪ S|.

Thus,

∑
v∈V

d(v) ≥ ℓ|L| + δ|S| + (δ + 1)|M | ≥ ℓ(δ + 1)
ℓ + 1 |L ∪ S| + (δ + 1)|M |

≥
(

δ + ℓ − δ

ℓ + 1

)
|G|.

Since ℓ ≥ k and
ℓ − δ

ℓ + 1 = k − δ

k + 1 + (δ + 1)(ℓ − k)
(ℓ + 1)(k + 1) (5.1)

we have d(G) = ∑
d(v)/|G| ≥ δ + (k − δ)/(k + 1), as desired.
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(a) A graph minimizing the average degree
over all graphs in which every minimum-
degree (3) vertex has a degree-5 neighbor

(b) A graph minimizing the average degree
over all graphs with minimum degree 3 in
which every vertex has a degree-5 neighbor

Figure 5.2: Graphs whose average degrees match the lower bounds given in Proposition 5.5

For the second statement, if every vertex in L has a neighbor in V − S, then

|S| ≤ e(L, S) ≤ ∑
v∈L(d(v) − 1) = (ℓ − 1)|L|. In this case, |L| ≥ |L ∪ S|/ℓ and

|S| ≤ (ℓ − 1)|L ∪ S|/ℓ. By a similar argument as before, we have

∑
v∈V

d(v) ≥
(

δ + ℓ − δ

ℓ

)
|G|.

Since
ℓ − δ

ℓ
= k − δ

k
+ δ(ℓ − k)

kℓ
(5.2)

we have d(G) ≥ δ + (k − δ)/k, as desired.

Constructions of graphs that minimize the average degree under the conditions

in Proposition 5.5 fall right out of the proof. We simply need to find graphs with

one degree-k vertex for every k degree-δ vertices, in the first case, or one degree-k

vertex for every k − 1 degree-δ vertices in the second. Figure 5.2 depicts examples

of such graphs. Essentially, we take an even number of copies of K1,k and add a

(δ − 1)-regular graph on the set of leaves (Figure 5.2a), or we take an even number

of copies of K1,k−1, add a matching on their centers, and again add a (δ − 1)-regular

graph on the leaves (Figure 5.2b).
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Lemma 5.6 ([20]). For any graph H with k′
1 > k0, and for any n ≥ |H|,

ssat(n, H) ≥
(

k0 + k′
1 − k0

k′
1 + 1

)
n

2 − c1.

If, in addition, k1 > k0, then

ssat(n, H) ≥
(

k0 + k′
1 − k0

k′
1

)
n

2 − c2,

where c1 = (k0+1)(k′
1−k0)

2k′
1+2 + (k0+1)2

8 and c2 = (k0+2)(k′
1−k0)

2k′
1

+ (k0+1)2

8 .

Proof. Let G be an H-semisaturated graph of order n. Partition the vertex set V of G

as follows: let S = {v ∈ V : d(v) ≤ k0}, M = {v ∈ V : k0 < d(v) < k′
1}, and L = {v ∈

V : d(v) ≥ k′
1}. We may assume S is nonempty, or else the statement is trivial. Let A

and B be the cliques in S given by Proposition 5.3; that is, A = {v ∈ S : d(v) < k0}

and B = {v ∈ S : N(v) ∩ L = ∅}. Since every vertex in S − B has a neighbor in L,

e(L, S) ≥ |S − B| = |L ∪ S| − |L| − |B|, and clearly e(L, S) ≤ ∑
v∈L d(v) = |L|d(L).

Letting ℓ = d(L), it follows that |L ∪ S| − |B| ≤ |L|(ℓ + 1), so

|L| ≥ 1
ℓ + 1 |L ∪ S| − |B|

ℓ + 1 and |S| ≤ ℓ

ℓ + 1 |L ∪ S| + |B|
ℓ + 1 .

Thus,

ℓ|L| + k0|S| ≥ ℓ + k0ℓ

ℓ + 1 |L ∪ S| − ℓ − k0

ℓ + 1 |B| =
(

k0 + ℓ − k0

ℓ + 1

)
|L ∪ S| − ℓ − k0

ℓ + 1 |B|.
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Using equation (5.1) and noting that |L ∪ S| ≥ |B|, it follows that

ℓ|L| + k0|S| ≥
(

k0 + k′
1 − k0

k′
1 + 1

)
|L ∪ S| − k′

1 − k0

k′
1 + 1 |B|.

Since |B| ≤ k0 + 1, we have

∑
v∈L∪S

d(v) = ℓ|L| + k0|S − A| +
∑
v∈A

d(v) ≥ ℓ|L| + k0|S| + |A|(|A| − 1 − k0)

≥
(

k0 + k′
1 − k0

k′
1 + 1

)
|L ∪ S| − (k0 + 1)(k′

1 − k0)
k′

1 + 1 − (k0 + 1)2

4 .

Every vertex in M has degree at least k0 +1 by definition, and S, M , and L partition

V , so the degree sum of G is at least
(
k0 + (k′

1 − k0)/(k′
1 + 1)

)
n − 2c1.

For the second statement, suppose k1 > k0. Letting D be the clique of vertices

without a neighbor of degree at least k1, as in Proposition 5.3, we note that |D∩L| ≤ 1

since k1 ≤ k′
1. Thus, e(L, S) ≤ ∑

v∈L(d(v) − 1) + 1 = (ℓ − 1)|L| + 1. Since e(L, S) ≥

|L ∪ S| − |B| − |L|, we now have |L ∪ S| − |B| ≤ ℓ|L| + 1. If ℓ = 0 (i.e., if L = ∅),

then S = B. Otherwise,

|L| ≥ 1
ℓ
|L ∪ S| − 1

ℓ
(|B| + 1) and |S| ≤ ℓ − 1

ℓ
|L ∪ S| + 1

ℓ
(|B| + 1).

Also, in this case, |L ∪ S| ≥ |B| + 1, so that using equation (5.2) we have

ℓ|L| + k0|S| ≥
(

k0 + k′
1 − k0

k′
1

)
|L ∪ S| − (k0 + 2)(k′

1 − k0)
k′

1
.

Note that the above inequality still holds (and is strict) when L = ∅. Thus, by the

same reasoning as before, the degree sum of G is at least
(
k0 + (k′

1 − k0)/k′
1

)
n − 2c2.
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The handshake lemma completes the proof.

5.1.2 Now we worry about k′
0

Let H be a graph with k0 = k1 < k′
1 < k′

0. Recall from Proposition 5.3 that, in an

H-semisaturated graph G, almost every vertex of degree at most k0 has a neighbor

of degree at least k′
1, and almost every vertex of degree less than k′

0 (including those

of degree k′
1) have a neighbor of degree larger than k1 (and thus larger than k0). The

constructions discussed in the previous section (depicted in Figure 5.2) give us two

ideas for such a graph of minimum size: either all vertices have degree either k0 or k′
1,

with two degree-k′
1 vertices for every 2(k′

1 − 1) degree-k0 vertices (as in Figure 5.2b);

or all vertices have degree either k0 or k′
0, with one degree-k′

0 vertex for every k′
0

degree-k0 vertices (as in Figure 5.2a).

Example 5.1 ([20]). Let us compare, as k′
0 varies, the average degree of a graph of

the form given in Figure 5.2a with vertices of degree k0 and k′
0 to the average degree

of one as in Figure 5.2b with vertices of degree k0 and k′
1. Note that the former graph

has average degree k0+(k′
0−k0)/(k′

0+1) and the latter k0+(k′
1−k0)/k′

1. Suppose that

k′
1 = 4 and k0 = k1 < k′

1. If k′
0 = 6, then (k′

0−k0)/(k′
0+1) = 5/7 < (k′

1−k0)/k′
1 = 3/4.

However, if k′
0 = 8, then (k′

0 − k0)/(k′
0 + 1) = 7/9 > 3/4. If instead k′

0 = 7, then the

two quantities are equal. In general, we have

k′
0 − k0

k′
0 + 1 ≤ k′

1 − k0

k′
1

if and only if k′
0 − k′

1 ≤ k′
0 − k0

k0 + 1 . (5.3)

We conclude this section, and the proof of Theorem 5.4, by determining that these

constructions are optimal. That is, when k′
0 > k′

1, these graphs have minimum average
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degree over all graphs with minimum degree k0 in which every degree-k0 vertex has

a neighbor of degree at least k′
1, and every vertex of degree strictly less than k′

0 has

a neighbor of degree strictly greater than k0.

Lemma 5.7 ([20]). For any graph H with k0 = k1 < k′
1 < k′

0, and for any n ≥ |H|,

sat(n, H) ≥


(
k0 + k′

0−k0
k′

0+1

)
n
2 − c1 : k′

0 ≤ k′
1 + k′

0−k0
k0+1 ;(

k0 + k′
1−k0
k′

1

)
n
2 − c2 : k′

0 ≥ k′
1 + k′

0−k0
k0+1 ,

where c1 = (k0+1)(k′
0−k0)

2k′
0+2 + (k0+1)2

8 and c2 = (k0+2)(k′
1−k0)

2k′
1

+ (k0+1)2

8 .

Proof. Let G be an H-semisaturated graph of order n. Partition the vertex set V

of G as follows: let S = {v ∈ V : d(v) ≤ k0}, M = {v ∈ V : k0 < d(v) < k′
1},

L = {v ∈ V : k′
1 ≤ d(v) < k′

0}, and XL = {v ∈ V : d(v) ≥ k′
0}. Let A and B

be as in Proposition 5.3. We partition S − B into subsets SL and SXL of vertices

with a neighbor in L or XL, respectively (if a vertex has neighbors in both L and

XL, assign it to either set arbitrarily). We will show that d(L ∪ SL) is not much less

than k0 + (k′
1 − k0)/k′

1 if L is nonempty, and that d(XL ∪ SXL) is not much less than

k0 + (k′
0 − k0)/(k′

0 + 1) if XL is nonempty.

First, suppose L ̸= ∅ and consider L ∪ SL. At least one out of any pair of

nonadjacent vertices in L has a neighbor in V − S, since d(v) < k′
0 for all v ∈ L.

It follows that at most one vertex in L has all of its neighbors in S, so that |SL| ≤

e(L, SL) ≤ ∑
v∈L(d(v) − 1) + 1. That is, |L ∪ SL| − |L| ≤ |L|d(L) − |L| + 1. Letting

ℓ = d(L), we have

|L| ≥ 1
ℓ
|L ∪ SL| − 1

ℓ
and |SL| ≤ ℓ − 1

ℓ
|L ∪ SL| + 1

ℓ
.
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Thus,

ℓ|L| + k0|SL| ≥ ℓ + k0(ℓ − 1)
ℓ

|L ∪ SL| − ℓ − k0

ℓ

≥
(

k0 + k′
1 − k0

k′
1

)
|L ∪ SL| − k′

1 − k0

k′
1

.

Note that if L = ∅, the final inequality above still holds, and is strict.

Now consider XL ∪ SXL. We have |SXL| ≤ e(XL, SXL) ≤ ∑
v∈XL d(v). Letting

x = d(XL), we have

|XL| ≥ 1
x + 1 |XL ∪ SXL| and |SXL| ≤ x

x + 1 |XL ∪ SXL|.

Thus,

x|XL| + k0|SXL| ≥ x(k0 + 1)
x + 1 |XL ∪ SXL| ≥

(
k0 + k′

0 − k0

k′
0 + 1

)
|XL ∪ SXL|.

We have

∑
v∈V −M

d(v) =
(
x|XL| + k0|SXL|

)
+
(
ℓ|L| + k0|SL|

)
+ k0|B| −

∑
s∈A

(k0 − d(s)).

If k′
0 − k′

1 ≥ (k′
0 − k0)/(k0 + 1), then by (5.3),

∑
v∈V −M

d(v) ≥ k′
1 + k0(k′

1 − 1)
k′

1
|V − M | − k′

1 − k0

k′
1

(|B| + 1) − |A|(k0 + 1 − |A|).

It follows that the degree sum of G is at least
(
k0 + (k′

1 − k0)/k′
1

)
n − 2c2. Otherwise,
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if k′
0 − k′

1 ≤ (k′
0 − k0)/(k0 + 1), then

∑
v∈V −M

d(v) ≥ k′
0(k0 + 1)
k′

0 + 1 |V − M | − k′
0 − k0

k′
0 + 1 |B| − |A|(k0 + 1 − |A|).

In this case, the degree sum of G is at least

(
k0 + k′

0 − k0

k0 + 1

)
n − (k0 + 1)(k′

0 − k0)
k′

0 + 1 − (k0 + 1)2

4 .

The handshake lemma completes the proof.

5.2 Strengthenings

For a graph H with k′
1 > k0 in which some edge minimizing wt0 is not contained in any

triangles, Theorem 5.4 provides a stronger lower bound on ssat(n, H) than Cameron

and Puleo’s. Conversely, if every edge minimizing wt0 is contained in at least one

triangle, then wt0(uv)+wt△(uv) ≥ k0 +1 for every uv ∈ E(H). All of the asymptotic

lower bounds proven here on the average degree of an H-semisaturated graph are

bounded (strictly) above by k0 + 1, so Cameron and Puleo’s bound outperforms ours

in this case. However, the case which motivates our work is that of triangle-free

graphs, and for these we can improve upon Theorem 5.4. In fact, our improvements

hold for larger classes of graphs H than triangle-free graphs. As the classes can be a

bit unwieldy to state, we phrase our results in terms of the more well-studied class of

triangle-free graphs, noting the precise classes with the corresponding lemmas which

make up the proof of our main result.

Theorem 5.8 ([20]). Let H be a triangle-free graph, and let n ≥ |H|. If k′
1 ≥
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k0 +
√

2k0 + 1, or if k′
1 ≥ k0 +2 and at least one degree-(k0 +1) endpoint of every edge

in H minimizing wt0 has a neighbor of degree at least k′
1, then there is a constant c

depending only on H such that

ssat(n, H) ≥
(

k0 + k′
1 + 1 − k0

k′
1 + 2

)
n

2 − c. (5.4)

If, in addition to either of the above conditions, k1 > k0, then

ssat(n, H) ≥
(

k0 + k′
1 + 1 − k0

k′
1 + 1

)
n

2 − c. (5.5)

Essentially, Theorem 5.8 states that, under the given conditions, the average de-

gree of an H-semisaturated graph cannot be much less than that of a graph as depicted

in Figure 5.2a, in the first case, or Figure 5.2b in the second, but with high-degree

vertices of degree k′
1 + 1 and low-degree vertices of degree k0. As we will see in Chap-

ter 6, the former construction provides an upper bound on the saturation number to

match Theorem 5.8 for certain trees called unbalanced double stars.

We prove Theorem 5.8 in Sections 5.2.1 and 5.2.2. In Section 5.2.3, we note that, as

a corollary of our proof techniques, one can also obtain strengthenings of Theorem 5.4

for triangle-free graphs H which do not meet the conditions on k′
1 in terms of k0 in

Theorem 5.8. This last result will also be used in Chapter 6 to provide an improved

lower bound on the semisaturation numbers of certain trees called caterpillars.

109



x

y

z
k′

1 − 1

Figure 5.3: Nonadjacent low-degree vertices x and y which share their high-degree neigh-
bor(s) in an H-semisaturated graph when H is triangle-free

5.2.1 Extra-high-degree neighbors, pt. 1

Let H be a graph in which none of the edges minimizing wt0 are contained in any

triangles. Let G be an H-semisaturated graph, and let x and y be nonadjacent

vertices in G whose degrees are at most k0. We shall call such vertices low-degree,

and vertices of degree at least k′
1 high-degree. Recall that, in any copy of H containing

xy in G + xy, xy plays the role of an edge uv ∈ E(H) with wt0(uv) = k0. Thus,

there exists a neighbor z ∈ N(x) ∪ N(y) such that dG(z) ≥ k′
1. However, not any old

high-degree neighbor z will do, for if z is adjacent to both x and y, then it must have

at least k′
1 − 1 other neighbors in G in order to play the role of a neighbor w of uv in

H with d(w) = k′
1 (see Figure 5.3). In other words, G has the following property:

for any pair of nonadjacent vertices x, y with degrees at most k0, there

exists z ∈ N(x) ∪ N(y) such that |N(z) − {x, y}| ≥ k′
1 − 1.

(P1)

We can make a number of similar (stronger) claims about G, x, and y when the

endpoints of the minimum-wt0 edges in H are also not contained in any triangles.

In this case, since x and y are low-degree, whichever one plays the role of a degree-

(k0 + 1) endpoint of an edge in a copy of H ⊆ G + xy containing xy, say y, must use

all of its incident edges in this copy. And, since these edges are not contained in any
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triangles, the vertex z playing the role of a high-degree neighbor of y in H must have

k′
1 − 1 edges outside of N(y) ∪ {x, y}. In other words, for any pair of nonadjacent

low-degree vertices x, y in an H-semisaturated graph G, there exists z ∈ N(x)∪N(y)

such that |N(z) − (N(x) ∪ y)| ≥ k′
1 or |N(z) − (N(y) ∪ x)| ≥ k′

1. We will use a similar

idea to this one in the following subsection to prove Lemma 5.10.

For now, we only use the simpler property (P1), along with similar techniques used

for Lemma 5.6, to prove part of Theorem 5.8. The important implication of (P1) is

that, for any vertex z in an H-semisaturated graph with d(z) = k′
1, the low-degree

neighbors of z which only have z for a high-degree neighbor form a clique.

Lemma 5.9 ([19]). Let H be a graph in which none of the edges minimizing wt0 are

contained in any triangles, and let n ≥ |H|. If k′
1 ≥ k0 +

√
2k0 + 9/4 − 1/2, then the

inequality (5.4) holds. If k′
1 ≥ k0 +

√
2k0 + 1 and k1 > k0, then (5.5) holds.

Proof. Let G be an H-semisaturated graph on vertex set V , |V | = n. We partition

V into sets S, M , L, and XL, letting S = {v : d(v) ≤ k0}, M = {v : k0 < d(v) < k′
1},

L = {v : d(v) = k′
1}, and XL = {v : d(v) > k′

1}. Note that L and XL differ

than in the proof of Lemma 5.7. Let A and B be the cliques in Proposition 5.3;

A = {v ∈ S : d(v) < k0} and B = {v ∈ S : N(v) ∩ (L ∪ XL) = ∅}.

We begin with the first statement. Suppose k′
1 ≥ k0 +

√
2k0 + 9/4 − 1/2. We

handle the degree sum over XL and the set SXL of vertices in S with a neighbor in

XL in a nearly identical manner as we proved the first statement of Lemma 5.6 or

the second statement of Lemma 5.7. We have |SXL| ≤ e(XL, SXL) ≤ d(XL)|XL| and

d(XL) ≥ k′
1 + 1 so that

∑
v∈XL∪SXL

d(v) ≥
(

k0 + k′
1 + 1 − k0

k′
1 + 2

)
|XL ∪ SXL| − |A ∩ SXL|(k0 + 1 − |A|). (5.6)
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We now restrict our attention to L and the set SL of vertices in S whose only

high-degree neighbors lie in L; SL = S − (B ∪ SXL). By the property (P1), if x and

y are vertices in SL which share all of their neighbors in L, then xy ∈ E(G). It

follows that, for any z ∈ L, the set of vertices x in N(z) ∩ SL whose only high-degree

neighbor is z form a clique (of order at most k0). Thus, at most k0|L| vertices in

SL have exactly one neighbor in L, so 2|SL| − k0|L| ≤ e(L, SL) ≤ k′
1|L|. This gives

|L| ≥ 2
k′

1+k0+2 |L ∪ SL| and |SL| ≤ k′
1+k0

k′
1+k0+2 |L ∪ SL|. Therefore,

k′
1|L| + k0|SL| ≥ 2k′

1 + k0k
′
1 + k2

0
k′

1 + k0 + 2 |L ∪ SL|.

Note that
2k′

1 + k0k
′
1 + k2

0
k′

1 + k0 + 2 ≥ (k0 + 1)(k′
1 + 1)

k′
1 + 2

if and only if k′
1 ≥ k0 +

√
2k0 + 9/4 − 1/2. This is precisely our supposition, and

therefore

∑
v∈L∪SL

d(v) ≥
(

k0 + k′
1 + 1 − k0

k′
1 + 2

)
|L ∪ SL| − |A ∩ SL|(k0 + 1 − |A|).

The degree sum over S ∪ L ∪ XL is the degree sum over L ∪ SL, XL ∪ SXL and B,

so

∑
v∈S∪L∪XL

d(v) ≥
(

k0 + k′
1 + 1 − k0

k′
1 + 2

)
|L∪XL∪S|− k′

1 + 1 − k0

k′
1 + 2 |B|− |A|(k0 +1−|A|).

Since d(v) ≥ k0 + 1 for all v ∈ M , and since S, M , L, and XL partition V , we have

∑
v∈V

d(v) ≥
(

k0 + k′
1 + 1 − k0

k′
1 + 2

)
n − (k0 + 1)(k′

1 + 1 − k0)
k′

1 + 2 − (k0 + 1)2

4 .
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Therefore, inequality (5.4) holds.

Now, we prove the second statement. Suppose k1 > k0 and k′
1 ≥ k0 +

√
2k0 + 1.

Let D be as in Proposition 5.3. In particular, we note that |D ∩ (L ∪ XL)| ≤ 1 since

k′
1 ≥ k1; that is, at most one vertex in L ∪ XL has all of its neighbors in S. Thus,

|SXL| ≤ e(XL, SXL) ≤ (d(XL) − 1)|XL| + 1, and

d(XL)|XL| + k0|SXL| ≥
(

k0 + k′
1 + 1 − k0

k′
1 + 1

)
|XL ∪ SXL| − k′

1 + 1 − k0

k′
1 + 1 . (5.7)

As before, 2|SL| − k0|L| ≤ e(L, SL), but this time e(L, SL) ≤ (k′
1 − 1)|L| + 1 since

all but at most one vertex in L have neighbors outside of S when k1 > k0 (see the

clique C in Proposition 5.3). This gives 2|L ∪ SL| ≤ (k′
1 + k0 + 1)|L| + 1, and thus

|L| ≥ 2|L ∪ SL| − 1
k′

1 + k0 + 1 and |S| ≤ (k′
1 + k0 − 1)|L ∪ SL| + 1

k′
1 + k0 + 1 .

Therefore,

k′
1|L| + k0|SL| ≥ (k0 + 2)k′

1 + k0(k0 − 1)
k′

1 + k0 + 1 |L ∪ SL| − k′
1 − k0

k′
1 + k0 + 1 .

Note that, since k′
1 ≥ k0 +

√
2k0 + 1,

(k0 + 2)k′
1 + k0(k0 − 1)

k′
1 + k0 + 1 ≥ k0 + k′

1 + 1 − k0

k′
1 + 1 .

Thus,

k′
1|L| + k0|SL| ≥

(
k0 + k′

1 + 1 − k0

k′
1 + 1

)
|L ∪ SL| − k′

1 − k0

k′
1 + k0 + 1 . (5.8)

Now, since we can’t have both a vertex in L and a vertex in XL with all of its
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neighbors in S, we can eliminate the negative constant from at least one of (5.7)

or (5.8); we eliminate the latter since k′
1+1−k0
k′

1+1 >
k′

1−k0
k′

1+k0+1 . Now, using this and the

bounds (5.7) and (5.8), summing over L, XL, SL, and SXL (i.e., over V − (M ∪ B)),

we obtain

∑
V −(M∪B)

d(v) ≥
(

k0 + k′
1 + 1 − k0

k′
1 + 1

)
|V − (M ∪ B)| − k′

1 + 1 − k0

k′
1 + 1 − |A|(k0 + 1 − |A|).

Finally, since d(v) ≥ k0 + 1 for all v ∈ M , d(v) = k0 for all v ∈ B, and |A|(k0 + 1 −

|A|) ≤ (k0 + 1)2/4, we have

∑
v∈V

d(v) ≥
(

k0 + k′
1 + 1 − k0

k′
1 + 1

)
n − (k0 + 2)(k′

1 + 1 − k0)
k′

1 + 1 − (k0 + 1)2

4 .

Therefore, inequality (5.5) holds, completing the proof.

Note that
√

2k0 + 1 ≥
√

2k0 + 9/4 − 1/2, and the difference between these two

values is at most 1/2. In particular, Lemma 5.9 is only slightly stronger than Theo-

rem 5.8 for graphs H in which k1 ≤ k0 and some edge minimizing wt0 does not have

a degree-(k0 + 1) endpoint with a neighbor of degree at least k′
1.

5.2.2 Extra-high-degree neighbors, pt. 2

We now complete the proof of Theorem 5.8. Our final lemma in this chapter applies

to a smaller class of graphs H than Lemma 5.9. Here, we let H be a graph such that,

for any edge minimizing wt0, at least one higher-degree endpoint has a neighbor of

degree k′
1 and is not contained in any triangles. We will show that, if k′

1 > k0 +1, then

almost every low-degree vertex in a minimum H-semisaturated graph has a neighbor
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of degree at least k′
1 + 1; further, if k1 > k0 as well, then every vertex has a neighbor

of degree at least k′
1 + 1. This is analogous to what we prove in Lemma 5.9.

Note that we could prove a similar statement by defining a new weight function

wt∗
1 on E(H) which counts the maximum degree of a neighbor of a higher-degree

endpoint of any edge in H. However, this would not result in a stronger bound; if the

minimum value of wt∗
1 over all edges minimizing wt0 is strictly less than that of wt1,

then our improved statement would be no stronger than Theorem 5.4. This allows us

to (thankfully) avoid using a third weight function to prove the following lemma.

Lemma 5.10 ([20]). Let H be a graph in which, for every edge minimizing wt0, at

least one degree-(k0 + 1) endpoint has a neighbor of degree k′
1 and is not contained

in any triangles. If k′
1 > k0 + 1, then the inequality (5.4) holds, and if we also have

k1 > k0, then (5.5) holds.

To prove Lemma 5.10, we require a stronger property than (P1) for graphs H in

which every edge minimizing wt0 has a degree-(k0+1) endpoint which is not contained

in any triangles and has a neighbor of degree k′
1.

Let G be an H-semisaturated graph, and let x and y be nonadjacent low-degree

vertices in G. Consider a copy of H in G + xy which uses the edge xy. Since xy

plays the role of an edge minimizing wt0 in H, at least one of x or y, say y, plays the

role of a degree-(k0 + 1) endpoint of this edge with a neighbor of degree k′
1 and no

common neighbors with this high-degree neighbor. It follows that all of the k0 + 1

edges incident to y in G + xy are used in the copy of H, and none of these make

a triangle with the high-degree neighbor z of y in the copy of H. Thus, for some

z ∈ N(y), |N(z) − NG+xy(y)| ≥ k′
1. See Figure 5.4. In other words, G has the
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y

N [y]

x

z
k′

1 − 1

Figure 5.4: A high-degree neighbor z of y needs at least k′
1 − 1 neighbors outside of N(y) ∪

{x, y} (see the property (P2)).

following property.

for any pair of nonadjacent vertices x, y with degrees at most k0, there

exists either z ∈ N(y) such that |N(z)−(N(y)∪x)| ≥ k′
1 or z′ ∈ N(y)

such that |N(z′) − (N(y) ∪ x)| ≥ k′
1.

(P2)

With this in hand, we are ready to prove Lemma 5.10, finishing off the proof of

Theorem 5.8.

Proof of Lemma 5.10. Let G be an H-saturated graph on vertex set V , |V | = n. Let

S, M , L, and XL be the partition of V defined in the proof of Lemma 5.9, and let

A and B be the cliques in Proposition 5.3 (as they have been throughout). Letting

SXL also be as in the proof of Lemma 5.9, we note that the bound (5.6) still holds.

Recall that the set SL in the proof of Lemma 5.9 consisted of all vertices in S which

are not in SXL or B. Note that the vertices v in SL which share a common neighbor

with each of their neighbors in L form a clique by the property (P2) of G; indeed, if v′

is another such vertex, then |N(w) − (N(v) ∪ v′)| < k′
1 and |N(w′) − (N(v′) ∪ v)| < k′

1

for all w ∈ N(v) ∩ L and w′ ∈ N(w′) ∩ L. Property (P2) also implies that, for any

vertex u ∈ B, we must have uv ∈ E(G). Let B′ denote the clique in G consisting of

B and the clique described above. Let S ′
L = S − (SXL ∪ B′).
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Let v ∈ L. If v has two neighbors in S ′
L, each of them only having v for a

high-degree neighbor, then these vertices are adjacent by property (P1), but then

these vertices lie in B′ by the discussion in the previous paragraph. Thus, at most

|L| vertices in S ′
L have exactly one edge to L, so 2|S ′

L| − |L| = 2|L ∪ S ′
L| − 3|L| ≤

e(L, S ′
L) ≤ k′

1|L|. It follows that |L| ≥ 2
k′

1+3 |L ∪ S ′
L| and |S ′

L| ≤ k′
1+1

k′
1+3 |L ∪ S ′

L|. Thus,

k′
1|L| + k0|S ′

L| ≥ 2k′
1 + k0(k′

1 + 1)
k′

1 + 3 |L ∪ S ′
L|.

Note that 2k′
1+k0(k′

1+1)
k′

1+3 ≥ k0 + k′
1+1−k0
k′

1+2 if and only if k′
1 ≥ k0 + 2, which is true by

supposition. Thus,

∑
v∈L∪S′

L

d(v) ≥
(

k0 + k′
1 + 1 − k0

k′
1 + 2

)
|L ∪ S ′

L| − |A ∩ S ′
L|(k0 + 1 − |A|).

Now, the degree sum over S ∪ L ∪ XL is the degree sum over L ∪ S ′
L, XL ∪ SXL, and

B′, so

∑
v∈S∪L∪XL

d(v) ≥
(

k0 + k′
1 + 1 − k0

k′
1 + 2

)
|L∪XL∪S|− k′

1 + 1 − k0

k′
1 + 2 |B′|−|A|(k0 +1−|A|).

Noting that d(v) ≥ k0 + 1 for all v ∈ M and that S, M , L, and XL partition V , we

have

∑
v∈V

d(v) ≥
(

k0 + k′
1 + 1 − k0

k′
1 + 2

)
n − (k0 + 1)(k′

1 + 1 − k0)
k′

1 + 2 − (k0 + 1)2

4 .

That is, inequality (5.4) holds.

We now show that inequality (5.5) holds, supposing that k1 > k0. Note that the

lower bound (5.7) on the degree sum over XL and SXL in the proof of Lemma 5.9 holds
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for the same reasons. Also by similar reasoning, at most one vertex in L has all of its

neighbors in S, so e(L, S ′
L) ≤ (k′

1 − 1)|L| + 1. We have seen that 2|L ∪ S ′
L| − 3|L| ≤

e(L, S ′
L). It follows that, |L| ≥ 2

k′
1+2 |L ∪ S ′

L| − 1
k′

1+2 and |S ′
L| ≤ k′

1
k′

1+2 |L ∪ S ′
L| + 1

k′
1+2 .

Therefore,

k′
1|L| + k0|S ′

L| ≥ 2k′
1 + k0k

′
1

k′
1 + 2 |L ∪ S ′

L| − k′
1 − k0

k′
1 + 2

≥
(

k0 + k′
1 + 1 − k0

k′
1 + 1

)
|L ∪ S ′

L| − k′
1 − k0

k′
1 + 2 ,

where the second inequality holds by our supposition k′
1 > k0 + 1.

As in the proof of the second statement of Lemma 5.9, since at most one vertex in

L∪XL has all of its neighbors in S, we can eliminate one of the negative constants in

our lower bounds on the degree sum over L ∪ S ′
L and XL ∪ SXL. As such, we obtain

∑
V −(M∪B′)

d(v) ≥
(

k0 + k′
1 + 1 − k0

k′
1 + 1

)
|V − (M ∪ B′)| − k′

1 + 1 − k0

k′
1 + 1 − |A|(k0 + 1 − |A|).

Finally, since d(v) ≥ k0 + 1 for all v ∈ M , d(v) = k0 for all v ∈ B′, and |A|(k0 + 1 −

|A|) ≤ (k0 + 1)2/4, we have

∑
v∈V

d(v) ≥
(

k0 + k′
1 + 1 − k0

k′
1 + 1

)
n − (k0 + 2)(k′

1 + 1 − k0)
k′

1 + 1 − (k0 + 1)2

4 .

Thus, inequality (5.5) holds, completing the proof.
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5.2.3 One more slight improvement

Concerning the triangle-free graphs H which do not meet the conditions on k′
1 in terms

of k0 in Lemmas 5.9 and 5.10, we can still obtain improvements over our general lower

bound Theorem 5.4. Indeed, with a bit of extra arithmetic, these improvements can

be read off directly from the proofs. We do not state each of these improvements in

detail (the interested reader can easily go back and obtain the bounds they desire

from the corresponding proofs). We note one particular such bound below as it will

be useful in the following chapter.

Corollary 5.11 ([20]). Let H be a graph in which at least one higher-degree endpoint

of any edge minimizing wt0 has a neighbor of degree k′
1 and is not contained in any

triangles. If k′
1 = k1 = k0 + 1, then for any n ≥ |H|,

ssat(n, H) ≥
(

k0 + 2
k0 + 3

)
n

2 − 2k0 + 3
2k0 + 6 − (k0 + 1)2

8 .

Proof. Before we used the assumption k′
1 > k0+1 in the proof of the second statement

of Lemma 5.10, we had

∑
L∪S′

L

d(v) ≥ 2k′
1 + k0k

′
1

k′
1 + 2 |L ∪ S ′

L| − k′
1 − k0

k′
1 + 2 − |A ∩ S ′

L|(k0 + 1 − |A|).

In this case, d(L ∪ S ′
L) < d(XL ∪ SXL) when XL is nonempty (see (5.7)). It follows

that

∑
V −(M∪B′)

d(v) ≥
(

k0 + 2(k′
1 − k0)

k′
1 + 2

)
|V − (M ∪ B′)| − k′

1 − k0

k′
1 + 2 − (k0 + 1)2

4 .
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Substituting k′
1 = k0 + 1, and noting d(v) = k0 for all v ∈ B′, we have

∑
v∈V

d(v) ≥
(

k0 + 2
k0 + 3

)
|G| − 2|B′| + 1

k0 + 3 − (k0 + 1)2

4 ,

and 2|B′| + 1 ≤ 2k0 + 3, which completes the proof.
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Chapter 6

Double stars and caterpillars

In this section, we prove upper bounds on saturation numbers of certain trees. The

first saturation numbers of trees were determined by Kászonyi and Tuza in [60]. In

particular, they determined the saturation numbers of paths (see Theorem 6.5) and of

stars (recall that these agree asymptotically with the lower bound in Proposition 5.1,

sat(n, K1,t) = (t − 1)n/2 + O(1)).

In 2009, Faudree, Faudree, Gould, and Jacobson began a more systematic study

of saturation numbers of trees [47]. Among other results, they determined that K+
1,p−2

has the smallest saturation number out of all trees of order p, found the exact satura-

tion numbers of all trees of order at most 7, and the asymptotic saturation numbers

of trees in a number of different classes. For other classes of trees, they were able to

obtain bounds but were not able to fully resolve the asymptotics.
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(a) The double star S4,5 (b) An S4,5-saturated graph

Figure 6.1: The double star S4,5 on the left and an S4,5-saturated graph on the right of order
n = 18 and size (12n − 6)/7 = 30.

6.1 Double stars

One class examined in [47] is that of double stars. The diameter of a graph is the

maximum distance between two of its vertices, and a tree of diameter 3 is called a

double star. Let Ss,t denote the double star whose central vertices have degrees s and

t, respectively. We assume s ≤ t. If s = t, we call the double star balanced, and if

s < t, it is unbalanced. For example, the balanced double star S2,2 is the path P4,

and the unbalanced double star S2,t is the subdivided star K+
1,t−2. The unbalanced

double star S4,5 is depicted in Figure 6.1a.

In addition to determining sat(n, S2,t) exactly, the authors of [47] determined

the saturation numbers of balanced double stars asymptotically and bounded the

saturation numbers of unbalanced double stars.

Theorem 6.1 ([47]). For n ≥ s3,

s − 1
2 n ≤ sat(n, Ss,s) ≤ s − 1

2 n + s2 − 1
2 , and

s − 1
2 n ≤ sat(n, Ss,t) ≤ s

2n − (s − 1)2 + 8
8 .

For an unbalanced double star Ss,t, we have k0 = s − 1 and k′
1 = t ≥ k0 + 2.
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Further, any edge uv minimizing wt0 in Ss,t has only one endpoint of degree s, and

this endpoint has a neighbor of degree t. Theorem 5.8 thus provides an improved

lower bound for unbalanced double stars Ss,t.

Corollary 6.2 ([20]). For any positive integers s and t, 2 ≤ s < t, and for any

n ≥ s + t,

ssat(n, Ss,t) ≥ s(t + 1)n − s(t − s + 2)
2t + 4 − s2

8 .

We now determine that the saturation number of Ss,t is s(t+1)
2t+4 n+O(1). Our upper

bound is based upon the observation that a graph G0 obtained from two copies of

K1,t+1 by joining their sets of leaves with an (s − 2)-regular bipartite graph, as in

the larger component of Figure 6.1b, is Ss,t-saturated and has average degree exactly

s(t+1)/(t+2). Further, any graph consisting of disjoint copies of G0 is Ss,t-saturated.

We are able to add a disjoint clique of cardinality s to such a graph to obtain another

Ss,t-saturated graph G whose average degree is a little bit smaller than s(t+1)/(t+2).

More precisely, such a graph G has

s(t + 1)n − s(t − s + 2)
2t + 4 (6.1)

edges. In fact, we will prove a slight improvement upon Corollary 6.2 in Theorem 6.4,

determining that (6.1) is precisely the (semi)saturation number of Ss,t when n is large

and equivalent to s modulo 2t + 4. When n ̸≡ s (mod 2t + 4), we add vertices to

non-clique components in a manner described below.

Theorem 6.3 ([20]). Let s and t be positive integers, 2 ≤ s < t, and let q =
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max {1, ⌊s/2⌋ − 1}. For any n ≥ q(2t + 4) + s,

sat(n, Ss,t) ≤ s(t + 1)n + s(s − 1)
2t + 4 +

⌈
s

2

⌉
.

Proof of Theorem 6.3. Let Ss,t be a double star with s < t. For n ≥ q(2t + 4) + s

where q = max {1, ⌊(s − 2)/2⌋}, we construct an n-vertex graph G with the following

properties.

(i) We have V (G) = S ∪ L. For all v ∈ S, d(v) = s − 1. For all v ∈ L, d(v) ≥ t + 1.

(ii) For all v ∈ L, N(v) ⊆ S, and every w ∈ N(v) is contained in an independent

set of cardinality t + 1 in N(v).

(iii) Aside from a clique B of order s, every vertex in S has a neighbor in L, and at

most one vertex in S has two or more neighbors in L.

We claim that G is Ss,t-saturated. Since there are no vertices of degree at least t

adjacent to any vertices of degree at least s, G is Ss,t-free. Let x and y be nonadjacent

vertices in G. If x, y ∈ L, then both have degree at least t + 1 by (i), and they have

at most one common neighbor by (iii), so x and y are the internal vertices of a copy

of Ss,t in G + xy. If x ∈ S − B, let z ∈ N(x) ∩ L. By (ii), there is an independent set

Iz of cardinality t+1 in N(z) which contains x. There are t−1 vertices in Iz −{x, y}

and s − 1 neighbors of x which are not in Iz. Therefore, x and z are the internal

vertices of a copy of Ss,t in G + xy. If x ∈ B, we may assume y ∈ L, in which case

B − x serves as a set of s − 1 leaves, and y has a set of t − 1 neighbors disjoint from

B, resulting in a copy of Ss,t.

We construct G as follows. Let L and S partition the vertex set of G with

|L| = 2⌊(n − s)/(2t + 4)⌋. Let r be the remainder of (n − s)/(2t + 4), and let R be
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a set of r vertices in S. Let B be a clique of order s in S. Let every vertex in L be

adjacent to t + 1 distinct vertices in S − (B ∪ R) so that V (G) − (B ∪ R) induces a

set of at least 2q copies of K1,t+1. This partitions S − (B ∪ R) into classes.

If r is even, make two of these stars into copies of K1,t+1+r/2, and put an (s − 2)-

regular bipartite graph on the two sets of t + 1 + r/2 vertices in S. Since |L| is even,

we can pair up the remaining classes in S − (B ∪ R), and put an (s − 2)-regular

bipartite graph on each pair.

If r is odd, let v ∈ R, and repeat the steps in the previous paragraph for R − v. If

s is even, give v a single neighbor in L, and if s is odd, give v two neighbors in L. If

s > 3, then take an adjacent pair in S − B, delete the edge between them, and give

each an edge to v. Repeat this, choosing a different pair of classes at each step for

the adjacent pair to ensure condition (ii), until v has degree s−1. By our assumption

on n, this is always possible, as there are at least ⌊s/2⌋ − 1 pairs of classes to choose

from.

The resulting graph G meets conditions (i)–(iii). Further, for even r,

∥G∥ =
(

s(t + 1)
t + 2

)
n − r

2 − s(t − s + 2)
2t + 4 + sr

2t + 4

≤
(

s(t + 1)
t + 2

)
n

2 + s(s + t)
2t + 4 ,

and for odd r,

∥G∥ =
(

s(t + 1)
t + 2

)
n − 1

2 − s(t − s + 2)
2t + 4 + s(r − 1)

2t + 4 +
⌈

s

2

⌉

≤
(

s(t + 1)
t + 2

)
n

2 + s(s − 1)
2t + 4 +

⌈
s

2

⌉
.

125



This completes the proof.

We now prove that this upper bound construction is best possible for certain

values of n which are sufficiently large and meet divisibility conditions. Recall from

equation (6.1) that there are Ss,t-saturated graphs with precisely s(t+1)n−s(t−s+2)
2t+4 edges

when n ≡ s (mod 2t + 4).

Theorem 6.4 ([20]). Let s and t be positive integers, 2 ≤ s < t. There exists

n0 = n0(s, t) such that, for all n ≥ n0,

ssat(n, Ss,t) ≥ s(t + 1)n − s(t − s + 2)
2t + 4 ,

and this is sharp when n ≡ s (mod 2t + 4).

Proof. Suppose that G is an Ss,t-saturated graph of order n and that the clique A of

vertices in G with degree at most s−2 is nonempty. Let v ∈ A. If w is a nonneighbor

of v, then w must be the image of either the degree-s or degree-t vertex in the copy

of Ss,t in G + vw, and v must be the image of a leaf, a vertex of degree 1. Thus, w

has a neighbor of degree at least s.

Let S, L, and XL be as in the proofs of Lemmas 5.9 and 5.10; that is, S = {v :

d(v) < s}, L = {v : d(v) = t}, and XL = {v : d(v) > t}. Further, let S ′
L, SXL, and

B′ partition S in the same manner as Lemma 5.10. The vertex v in A has at most

s − 1 − |A| neighbors in L ∪ XL. Let N denote this set of high-degree neighbors of v.

We have e(L, SL) ≤ (t − 1)|L| + |N ∩ L| and e(XL, SXL) ≤ (x − 1)|XL| + |N ∩ XL|

where x = d(XL). By similar reasoning to the proof of Lemma 5.10, we have

∑
v∈V (G)

d(v) ≥
(

s − 1 + t − s + 2
t + 1

)
n − |B ∪ N |(t − s + 2)

t + 1 − s2

4 ,
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Figure 6.2: A graph of minimum size over all S3,4-(semi)saturated graphs of order 39

and the right side of this inequality is strictly larger than

s(t + 1)n − s(t − s + 2)
t + 2 ,

when n is sufficiently large. Thus, in a minimum Ss,t-saturated graph G of large

order, the set A is empty, and the first statement follows from the proof of Lemma 5.9.

Tightness when n ≡ s (mod 2t + 4) follows from the upper bound construction in

Theorem 6.3.

It is not hard to bound the function n0(s, t) using the upper bounds |N | ≤ s − 2

and |B′| ≤ s in the proof of Theorem 6.4, but it is ugly:

n0 ≥ s2(t2 − t − 10) + 4s(t2 + 7t + 10) − 8(t + 2)2

4(t − s + 2) .

To give some idea of what this looks like, for s = 3 and t = 4, any n ≥ 32 will

do; and for s = 4 and t = 5, any n ≥ 74 will do. In particular, the graph depicted in

Figure 6.2 is an S3,4-(semi)saturated graph of minimum size, and any graph consisting

of at least five copies of the larger component in Figure 6.1b and one copy of K4 is

an S4,5-(semi)saturated graph of minimum size. The author believes that the bound

in Theorem 6.4 is likely sharp whenever n = (2t + 4)q + s for some positive integer q,

but we have not attempted to prove this.
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6.2 Caterpillars

A caterpillar is a tree obtained from a path (the body) by adding pendent edges (feet)

to its internal vertices. If the same number s of edges are appended to each internal

vertex of the body, we call it an s-caterpillar, and if the body is a path on ℓ vertices,

we call this s-caterpillar P s
ℓ . In [20], we nicknamed P s

5 “Shorty the caterpillar.”

Note that the graphs P s
4 are balanced double stars. The saturation number of

P s
4 aligns asymptotically with the lower bound in Proposition 5.1 [47], as we noted

in Theorem 6.1 of the previous section. Faudree, Faudree, Gould, and Jacobson also

provided upper and lower bounds on sat(n, P s
ℓ ) for any ℓ ≥ 4 [47]. Corollary 5.11

improves upon their lower bound; in fact, though obtained in a different manner, their

lower bound aligns exactly with the one Proposition 5.1. We also demonstrated an

improved upper bound for ℓ = 5 in [20]. In particular, there is a constant c depending

only on s such that, for any n ≥ |P s−1
ℓ |,

sat(n, P s−1
ℓ ) ≥

(
s + 2

s + 3

)
n

2 − c (6.2)

and a constant d depending only on s such that, for n ≥ q(2s + 4) + s + 1, where

q = max {2, ⌊(s − 1)/2⌋},

sat(n, P s−1
5 ) ≤

(
s + 2

s + 2

)
n

2 + d. (6.3)

Rather than reproduce the proof of (6.3) from [20], we shall prove a generalization

for any ℓ ≥ 5.

We note that Pℓ = P 0
ℓ , and recall that Kászonyi and Tuza characterized the
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(a) T 3
5 (b) T 3

6

Figure 6.3: Two almost ternary trees

minimum path-saturated graphs in [60]. In particular, they determined that a disjoint

union of “almost binary” trees of depth ⌊ℓ/2⌋ is a Pℓ-saturated graph of minimum

size.

Definition 6.1 (T k
m). For positive integers k, m with m ≥ 3, let T k

m denote the almost

k-ary tree with diameter m − 1, defined as follows: the vertex set of T k
m is partitioned

into ⌈m/2⌉ levels; all leaves of T k
m are in the bottom level, and all other vertices have

degree k + 1; the top level contains either one vertex or a pair of adjacent vertices,

depending on whether m is odd or even, respectively; the vertices in the top level

have the rest of their k + 1 neighbors in the level below, and so do the vertices in

subsequent levels (except the bottom one, of course).

We acknowledge that notation may be getting confusing, with Tk, T p(n), and T k
m

all referring to different graphs. We encourage the reader to not distress, for we shall

not reference Tk or T p(n) in this section. Indeed, no section contains any two of these

three special classes of graphs.

Two almost ternary trees, T 3
5 and T 3

6 , are depicted in Figure 6.3. We note that

the order of T k
2m+1 is

1 + (k + 1) + k(k + 1) + · · · + km−1(k + 1) = (k + 1)km − 2
k − 1
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and the order of T k
2m is

2(1 + k + · · · + km−1) = 2(km − 1)
k − 1 .

We now state Kászonyi and Tuza’s result more precisely.

Theorem 6.5 ([60]). Let ℓ be an integer, ℓ ≥ 3, and let aℓ = |T 2
ℓ−1|. For any

n ≥ aℓ, every Pℓ-saturated graph of order n with minimum size is a forest with ⌊n/aℓ⌋

components. Hence sat(n, Pℓ) = n−⌊n/aℓ⌋. Further, every Pℓ-saturated tree contains

T 2
ℓ−1 as a subgraph.

In what follows, we generalize the upper bound, using the trees T s+2
ℓ−1 to construct

P s
ℓ -saturated graphs.

Before doing so, we note an important difference between semisaturation numbers

and saturation numbers of paths. It was observed by Burr in [21] that a disjoint

union of paths Pr, r = rℓ = ⌊3(ℓ − 1)/2⌋, is Pℓ-semisaturated. Noting that

aℓ = |T 2
ℓ−1| =


3 · 2m−1 − 2 : ℓ = 2m;

4 · 2m−1 − 2 : ℓ = 2m + 1,

a bit of basic arithmetic shows that rℓ < aℓ for ℓ ≥ 6. Thus, in this case, Pℓ-

semisaturated graphs have asymptotically fewer edges than Pℓ-saturated graphs.

Theorem 6.6 ([21]). Let ℓ be an integer, ℓ ≥ 2, and let r = ⌊3(ℓ − 1)/2⌋. For any

n ≥ 2r,

n −
⌊

n − 1
r

⌋
− 1 ≤ ssat(n, Pℓ) ≤ n −

⌊
n

r

⌋
.

We now return to proving an upper bound on sat(n, P s
ℓ ) for ℓ ≥ 5, s ≥ 0. We
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begin with a certain connected P s
ℓ -saturated graph, defined as follows.

Definition 6.2 (Gs
ℓ). For positive integers ℓ, s with ℓ ≥ 5, let Gs

ℓ denote a graph

whose vertex set can be partitioned into sets A and B such that each of the induced

subgraphs Gs
ℓ[A] and Gs

ℓ[B] is isomorphic to T s+2
ℓ−1 . The remaining edges in Gs

ℓ form

your favorite s-regular bipartite graph between the sets of leaves in Gs
ℓ[A] and Gs

ℓ[B].

For example, the graph G1
6 is depicted in Figure 6.4b. As we will presently show,

the graph Gs
ℓ is P s

ℓ -saturated, and so is any graph consisting of disjoint copies of Gs
ℓ.

For a value of n not divisible by the order of Gs
ℓ, we can add extra leaves to the

bottom level of one pair of T s+2
ℓ−1 ’s (plus one vertex with two high-degree neighbors if

n and s are both odd) to obtain a P s
ℓ -saturated graph of order n.

Lemma 6.7. For any ℓ ≥ 5 and s ≥ 0, the graph Gs
ℓ is P s

ℓ -saturated.

Proof. Let G = Gs
ℓ. Every vertex in G is either of degree s + 1 (low-degree) or s + 3

(high-degree). There are no ℓ−2 consecutive high-degree vertices in G, so it is P s
ℓ -free.

Let x and y be nonadjacent vertices in G. It remains to show that P s
ℓ ⊆ G + xy.

Recall the partition A, B of V (G) from Definition 6.2, where G[A] ∼= G[B] ∼= T s+2
ℓ−1 .

Case 1 (x, y ∈ A). We first suppose that x and y are on the same side of the partition

A, B of V (G), say A. Let L1, . . . , L⌊ℓ/2⌋ denote the levels of G[A], as described in

Definition 6.1, where |L1| > · · · > |L⌊ℓ/2⌋|.

Suppose x ∈ Li and y ∈ Lj with i ≤ j. Let P denote the unique x, y-path in

G[A]; write P = xx′ · · · y′y. Note that x and y are in distinct components of the

graph G′ = G[A] − yy′. We will find an s-caterpillar in each component of G′, one

having x and the other having y as an endpoint, which we join with the edge xy to

create a copy of P s
ℓ in G.
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First, suppose that x is not a descendant of y; that is, the path P is not monotone

with respect to the levels L1, L2, . . . in G[A]. In particular, the level containing y′ is

Lj+1, or is Lj if j = ⌊ℓ/2⌋ and ℓ is odd. In this case, y is the endpoint of a P s
j whose

body is a path from y to a leaf vertex in G′, and x is the endpoint of a P s
ℓ−i in G′

whose body is a path from x to L1 (visiting both vertices if ℓ is odd and y /∈ L1)

and back to a leaf. If at least one of x or y is high-degree, each of them has at least

s neighbors in G which are not in the other’s component of G′ (if one of x or y is

low-degree, then its neighbors are not in A). Thus, in this case, x and y are internal

vertices on a copy of P s
j+ℓ−i in G + xy, and so on a copy of P s

ℓ . In the case that both

x and y are low-degree vertices, we have x = j = 1, and y is a terminal vertex on the

resulting copy of P s
ℓ .

On the other hand, suppose that x is a descendant of y in G[A]. In G′, x is the

endpoint of a copy of P s
2j−i−2 whose body follows P from x to y′ and then from y′

to a leaf of G′. Since x is a nonadjacent descendant of y, we have j − i ≥ 2 and

2j − i − 2 ≥ j. Also, y is the endpoint of a copy of Pℓ−j whose body is a path from

y to L1 and back to a leaf of G′. We again join these with the edge xy, finding s

neighbors for x from the bipartite graph between A and B if necessary, to make x

and y internal vertices on a copy of P s
ℓ′ , where ℓ′ = ℓ + j − i − 2 ≥ ℓ. This completes

the proof of Case 1.

Case 2 (x ∈ A, y ∈ B). We now suppose that x and y are on different sides of the

partition, say x ∈ A and y ∈ B. Again, suppose that x is in level i of G[A] and y is

in level j of G[B], where i ≤ j. Note that x is an endpoint of a copy of Pℓ−i in G[A]

and y an endpoint of a Pℓ−j in G[B]. If j ≥ 2 (i.e., if y is a high-degree vertex), then

the sets N [x] and N [y] are certainly disjoint, and x and y are internal vertices on a
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(a) P 1
6 (b) G1

6

Figure 6.4: The caterpillar P 1
6 on the left and a P 1

6 -saturated graph on the right

copy of P s
2ℓ−i−j in G + xy. Since i ≤ j ≤ ⌊ℓ/2⌋, we have 2ℓ − i − j ≥ ℓ. On the other

hand, if i = j = 1, then since xy /∈ G, we can make y the terminal vertex, and x the

first internal vertex, on a copy of P s
ℓ in G + xy.

This completes the proof.

Theorem 6.8. For any positive integers s and t ≥ 2,

sat(n, P s−1
2t+1) ≤

(
s + 2(s + 1)t−1 − 1

(s + 1)t − 1

)
n

2 + c

and

sat(n, P s−1
2t+2) ≤

(
s + 2(s + 2)(s + 1)t−1 − 2

(s + 2)(s + 1)t − 2

)
n

2 + c.

Proof. Note that the average degree of Gs−1
ℓ agrees with the upper bound (c = 0)

when ℓ ∈ {2t + 1, 2t + 2}.

Write n = q|Gs−1
ℓ | + r where r < |Gs−1

ℓ |. Start by taking q − 1 copies of Gs−1
ℓ .

For the remaining |Gs−1
ℓ | + r vertices, we take two copies of T s+1

ℓ−1 as in the definition

of Gs−1
ℓ . In each copy of T s+1

ℓ−1 , choose a degree-(s + 2) vertex in the level just above

the leaves. To one of these we append ⌊r/2⌋ pendent edges, and to the other we

append ⌈r/2⌉ pendent edges. If s − 1 and r are both odd, then we add an extra edge
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from the leaf endpoint x of one of these pendent edges to a high-degree vertex in the

other copy of T s+1
ℓ−1 . Then, we give every low-degree vertex degree s by filling in an

(s − 1)-regular bipartite graph between the leaves, if one of s − 1 or r is even, or by

giving x s − 2 edges to any of the leaves, and then filling in the rest of the edges with

a bipartite graph if both s − 1 and r are odd. Call the resulting graph G.

Having no ℓ−2 consecutive vertices of degree s+1, G is P s−1
ℓ -free. Each component

of G isomorphic to Gs−1
ℓ is P s−1

ℓ -saturated by Lemma 6.7. The component with two

vertices of degree greater than s + 2 is P s−1
ℓ -saturated by the same arguments, with

the exception of the case in which n is odd and one low-degree vertex has these two

high-degree neighbors. For any possible nonneighbor of this vertex, the cases follow

similarly to the low-degree vertex cases above.

A similar argument to Case 2 in the proof of Lemma 6.7 shows that adding an

edge between components of G creates a copy of P s−1
ℓ . This completes the proof.

6.3 Rainbow saturation numbers of dou-

ble stars

Here we consider an edge-colored version of the saturation problem. In analogy with

proper vertex colorings and the chromatic number, a proper edge-coloring of a graph

G is an assignment of colors to its edges so that no two incident edges receive the

same color. This can be thought of as a partition of G with matchings (indeed, the

linear arboricity conjecture discussed in Chapter 1 can be seen as a generalization

of a classical theorem of Vizing [92]). Clearly, a graph with maximum degree ∆ will

need at least ∆ colors in a proper edge coloring, as every edge incident to a given
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vertex needs a different color. Vizing showed that this natural lower bound is off by

at most 1 from the minimum number of colors needed in general.

Theorem 6.9 ([92]). Every graph with maximum degree ∆ can be properly edge

colored with at most ∆ + 1 colors.

An edge-colored graph is called rainbow if all of its edges receive different colors.

In 2007, Keevash, Mubayi, Sudakov, and Verstraëte introduced the rainbow Turán

number of a graph H, denoted ex⋆(n, H) [61]. The rainbow Turán number of H is

the maximum number of edges in a graph of order n which can be properly edge-

colored in a manner that avoids a rainbow copy of H. We call such an edge coloring

rainbow H-free. As well as being a natural meeting point of two well-studied types

of problems, Turán-type problems and edge-coloring problems, the study of rainbow

Turán numbers was first motivated by an application to additive number theory [61].

In the same paper, these four authors proved that ex⋆(n, H) = ex(n, H) + o(n2),

showing that equality holds for color-critical graphs H, and they made progress on

the bipartite case. Notably, they proved that ex⋆(n, C2k) ≥ cn1+1/k for an absolute

constant c.

In 2022, Bushaw, Johnston, and Rombach introduced an analogous notion in the

realm of graph saturation [22]. A graph is said to be rainbow H-saturated if it is edge-

maximal with respect to the property of possessing a rainbow H-free edge coloring.

As in the case of classical saturation, this definition allows one to ask not only for the

maximum number of edges in a rainbow H-saturated graph of order n (ex⋆(n, H)),

but also for the minimum number of edges in an H-saturated graph of order n. This

minimum is called the rainbow saturation number of H, denoted sat⋆(n, H). We note

that sat⋆(n, H) is sometimes referred to as the proper rainbow saturation number to
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avoid confusion with a homonymous parameter.

Bushaw, Johnston, and Rombach proved that sat⋆(n, H) = O(n) for graphs H

without an induced even cycle. It has since been observed by various sources that

Kászonyi and Tuza’s proof that sat(n, H) is linear [60] extends to prove this statement

for arbitrary graphs H (see, for example, [65]). Thus, just like the classical saturation

number and semisaturation number, the problem of determining sat⋆(n, H) comes

down to determining a constant c such that sat⋆(n, H) = cn + o(n).

Proposition 6.10. Every rainbow H-saturated graph is H-semisaturated.

Proof. Suppose G possesses a rainbow H-free edge-coloring c, and let x and y be

nonadjacent vertices in G. If the edge xy is not contained in any copy of H in G+xy,

then extending c to an edge-coloring of G + xy in any admissible manner, we obtain

a rainbow H-free coloring in G + xy.

While the lower bound ssat(n, H) ≤ sat⋆(n, H) is trivial, it is not known whether

sat(n, H) ≤ sat⋆(n, H) in general. However, in all known nontrivial cases (i.e., other

than stars and triangles where every proper edge coloring is rainbow), these two

parameters differ asymptotically. For instance, consider the graph P4. A minimum P4-

saturated graph has about n/2 edges (see Figure 4.2), but it is clear that a matching

is not rainbow P4-saturated, for P4 has a proper edge-coloring with 2 colors. For the

same reason, any graph with two isolated edges is not P4-saturated. On the other

hand, a disjoint union of copies of K1,4 is rainbow P4-saturated and has average degree

4/5. This turns out to be asymptotically optimal.

Theorem 6.11 ([22]). For each n ≥ 16, ⌊4n/5⌋ ≤ sat⋆(n, P4) ≤ 4n/5 + O(1).
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Recently, the rainbow saturation number has received considerable attention. The

authors of [55] determined sat⋆(n, C4) = 11n/6+o(n) and provided bounds for C5 and

C6. The value of sat⋆(n, Pℓ) was independently determined to be n + O(1) for ℓ ≥ 5

in [7] and [66]. The former authors also determined sat⋆(n, K4) = 7n/2+O(1), and the

latter authors studied many other classes of trees. Included in these were the double

stars S2,t. They determined that a disjoint union of copies of K1,t+2 asymptotically

minimizes sat⋆(n, S2,t); more precisely, sat⋆(n, S2,t) = n − ⌊(n + t + 1)/(t + 3)⌋ [66]. In

the same paper, the authors provided upper bounds on saturation and semisaturation

for double stars which are not so far off from the ones described in Section 6.1. In

rainbow case, they proved that sat⋆(n, Ss,t) ≤ (⌈t/(s−1)⌉+2)(s−1)
(⌈t/(s−1)⌉+2)(s−1)+1 · sn

2 + O(1).

In this section, we prove that sat⋆(n, Ss,t) ≤ s+t
s+t+1 · sn

2 + O(1). First, we note that

our lower bound on ssat(n, Ss,t) also holds in the rainbow case by Proposition 6.10,

improving upon previous bounds.

Corollary 6.12. For any s < t and n ≥ s+t, we have sat⋆(n, Ss,t) ≥ s
(
1 − 1

t+2

)
n
2 −c,

where c = s(t−s+2)
2t+4 + s2

8 .

We now prove an upper bound, reminiscent of our upper bound for sat(n, Ss,t)

in Theorem 6.3. This result is based on joint work with Bushaw, Johnston, and

Rombach.

Theorem 6.13. For any s ≤ t and n ≥ 2(s + t + 1), we have

sat⋆(n, Ss,t) ≤ s
(

1 − 1
s + t + 1

)
n

2 + O(1).

Proof. For n divisible by 2(s + t + 1), we construct a rainbow Ss,t-saturated graph G

whose vertices have degree either s − 1 or s + t and with s + t vertices of degree s − 1
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for each vertex of degree s + t. Such a graph has 1
2 · n

s+t+1 · s(s + t) edges, matching

the claimed upper bound.

Our graph G is constructed by pairing up an even number of copies of K1,s+t and,

for each pair, adding an (s − 2)-regular bipartite graph between the partite sets of

size s + t. The graph G is Ss,t-free, and thus rainbow Ss,t-free as well. To see that

G is rainbow Ss,t-saturated, let x, y be nonadjacent vertices. If d(x) = d(y) = s + t,

then this is easy to see. Otherwise, without loss of generality, d(x) = s − 1. Let z be

the neighbor of x in G with degree s + t. All of the edges incident to x in G + xy

receive different colors in a proper edge coloring by definition, which leaves at least

s+ t− (s−1)−2 = t−1 other colors incident to z which do not go to {x, y}∪NG(x),

and thus we find a rainbow copy of Ss,t in every proper edge coloring of G + xy.

For even values of n not divisible by 2(s + t + 1), we take a graph G as previously

described, but with one connected component obtained from two copies of K1,s+t+r/2

and an (s−2)-regular bipartite graph, where r is the remainder of n/2(s+ t+1). For

odd n, add a new vertex to the (n − 1)-vertex graph constructed as above. Join that

new vertex to a single high-degree vertex if s is even, or to two high-degree vertices if

s is odd. If s ≥ 4, then delete an edge joining a pair of low-degree vertices in ⌊s/2⌋−1

different components, and add edges from the new vertex to each previously adjacent

pair of low-degree vertices so that the new vertex has degree s−1. A similar argument

to the one above shows that the resulting graph is rainbow Ss,t-saturated.
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Eulerian graph, 11
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Hamiltonian cycles, 12

handshake lemma, 95

hereditary class, 19

independent set, 4

induced subgraph, 18

isolated vertex, 4

leaf vertex, 126

linear arboricity, 11

linear forest, 11

matching, 9

number, 9

minimum rank, 26

neighborhood, 4

closed, 4

of an edge, 97

open, 4

odd cover, 12

H-odd cover, 12

H-odd cover number, 12

problem, 3

order, 3

orthogonal representation, 23

faithful, 23

pairs construction, 77

partition, 5

path, 5

perfect odd cover, 52

proper edge-coloring, 134

rainbow, 135

rainbow H-free, 135

rainbow H-saturated, 135

rainbow saturation number, 135

rainbow Turán number, 135

regular graph, 95

saturated graph, 90, 91

saturation number, 91

semisaturated graph, 90, 91

size, 3

spanning subgraph, 10

spider, 33

star, 5

subdivision, 15

subgraph complementation, 17

symmetric difference, 12

symplectic, 57

transversal, 63
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tree, 10

triclique, 5

tripartite, 4

Turán graph, 88

twin vertices, 46

adjacent twins, 53

union of graphs, 4

disjoint union, 4

vector representation, 24, 57

faithful, 24

vertex cover, 9

number, 9, 21
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